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1 Introduction

Recent years have seen an increase in the complexity and scale of probabilistic models used to un-
derstand and analyze data, with a corresponding increase in the difficulty of performing inference.
An important enabling factor in this context has been the development of stochastic gradient algo-
rithms for learning variational approximations to posterior distributions. In a separate line of work
researchers have been investigating how to use probabilistic inference for the problem of optimal
control [5, 6, 12, 17, 25]. By viewing control as an inference problem, they showed that they could
‘borrow’ algorithms from the inference literature (e.g. belief propagation) and turn them into control
algorithms. In this work, we do just the opposite: we formally map the problem of learning approx-
imate posterior distributions in variational inference (VI) onto the policy optimization problem in
reinforcement learning (RL), explaining this connection at two levels.

We first provide a high level connection, where draws from the approximate posterior (VI) corre-
spond to trajectory samples (RL), free energies (VI) to expected returns (RL), and where the core
computation involves computing gradients of expectations. We follow by a more detailed, sequen-
tial mapping where Markov Decision Processes concepts (state, action, rewards and transitions) are
clearly defined in the inference context. We then illustrate how this allows us to leverage ideas
from RL for inference network learning, for instance by introducing the concept of value functions
in sequential variational inference. For concreteness and simplicity, in the main text we focus on
inference for a particular model class and derive the general case in the appendix.

We provide background on variational inference and reinforcement learning in Secs. 2 and 3. We
then focus on the connection between the two frameworks in Sec. 4 and conclude with what entails
from this connection in Sec. 5.

2 Variational Inference

The inference problem: Given a model p(z)p(x|z) with latent variables z and observables x we
are interested in the posterior p(z|x). The exact posterior is intractable for many models of interest
so it is common to try and compute an approximate distribution q(z|x) that is close to the true
posterior in the sense detailed below.

Model and approximate posterior: We are interested in the setup where model p and approx-
imate posterior q decompose into a product of local conditional distributions. For simplicity and
clarity, we here consider the special case of a model in which the dependencies are Markovian
(e.g. in an HMM or a multi-layer stochastic neural network); a fully general exposition is found in
appendix B.
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Objective function: In variational inference, we aim to maximize the following function:

L(q) =
Z

q(z|x) log p(x|z)p(z)
q(z|x) dz. (3)

This objective function, which is known as the negative free energy, can be motivated in two ways:
(a) maximizing L(q) is equivalent to minimizing the KL divergence between the approximate pos-
terior q(z|x) and the true posterior p(z|x). (b) L(q) is a lower bound to the data log-likelihood
log p(x) and therefore maximizing L(q) leads to algorithms for optimizing the data log-likelihood.

Stochastic optimization of the objective function: The approximate posterior q is frequently
chosen from some parametric family with parameters ✓ (L is now a function of ✓ rather than q).
A Monte Carlo estimate of the gradient of L with respect to ✓ can be obtained by using the score
function method (see appendix A for details) as follows. For z(i) ⇠ q
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3 Reinforcement Learning

In RL an agent interacts with an environment in a sequential manner. In each step it observes the
state of the environment, executes an action, and receives an instantaneous reward. The agent’s goal
is to maximize the expected sum of these rewards.

Objective function: Formally, the goal is to maximize the following function:
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This distribution is a composition of the policy ⇡
✓

which is the state-conditional action distribution
(with parameters ✓) that characterizes the agent’s behavior, and of P (s
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transition probability of the Markov decision process (MDP) that models the environment..
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Stochastic optimization of the objective function: A basic Monte Carlo estimate of the gradient
of J in eq. (6) can be obtained as follows (see appendix A for details):
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where ⌧ ⇠ p
✓

. This gradient estimate is also known as the REINFORCE algorithm [26]. This
estimator has an intuitive interpretation: actions are ‘tried’ and their probabilites are then adjusted to
make high-return trajectories more likely. An important aspect of basic REINFORCE is that it does
not take advantage of the sequential aspect of the RL problem: it only considers total returns for
entire trajectories and does not perform a more fine grained credit assignment to individual actions.
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4 Variational Inference as Reinforcement Learning

4.1 The high level perspective: The monolithic inference problem

Maximizing the lower bound L with respect to the parameters of ✓ of q can be seen as an instance of
REINFORCE where q takes the role of the policy; the latent variables z are actions; and log

p✓(x,zi)

q✓(zi|x)
takes the role of the return. Equations (3) and (6) then take the same form, as do their gradients in
equations (5) and (9): in both cases we are maximizing an expectation

R
p
✓

(y)f(y)dy, with respect
to the parameters ✓ of the distribution p

✓

(y). This connection has been pointed out e.g. in [14].

Generic expectation RL VI
Optimization var. ✓ Policy param. ✓ Variational param. ✓
Integration var. y Trajectory ⌧ Latent trace z
Distribution p

✓

(y) Trajectory dist. p
✓

(⌧) Posterior dist. q
✓

(z|x)
Integrand f(y) Total return R(⌧) Negative Free energy log
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q✓(z|x)
⌘

Table 1: High-level connections between VI and RL. Both settings are special cases of the generic
problem of optimizing an expectation

R
p
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(y)f(y)dy, with respect to the parameters ✓ of the distri-
bution p
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(y).

Unlike in most RL settings, the rewards here depend directly on the (parameters of) the policy rather
than just through the state action distribution (but see e.g. the discussion in [2, 3, 7, 13]); in practice,
this has no impact on the applicability of RL algorithms to inference in most situations, particularly
when using policy networks.

4.2 Breaking it down: Bringing structure of the inference problem

A key idea of reinforcement learning is to exploit the structure of the optimization (often through
Markovian properties induced by the sequentiality of the problem) to create more refined versions
of naı̈ve algorithms. Similarly, we can exploit structure in the prior p and the posterior q to create
structured, sequential variational inference algorithms. Concepts and ideas in reinforcement learning
may then translate to new ideas in inference. Consider again the Markovian model from equations
(1) and (2). The variational lower bound can be decomposed as follows:
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is the return from step k. See table 2 for a precise mapping between varia-
tional inference and RL for this problem. Note a few particularities of the MDP derived from our
variational problem:

• The variational inference MDP (VIMDP) structure depends on the structure of the posterior
distribution (e.g. the order in which variables are sampled in q(z|x)).

• When performing armortized inference (computing a parametric mapping from datapoint x
to posterior q(z|x)), the datapoint shows up in the VIMDP as a context x. Having a context
(a part of the state which is random for each episode but stays constant throughout the
episode) is less commonly done in RL (but has no impact on applicability of algorithms).

• The state is composed of the constant context x and the dynamic part of the state z
k

. For a
more complex model and posterior, the state would be composed of the context, and some
function of the history of actions (i.e. latent variables) taken so far (see appendix B).

• The state transition for VI is a deterministic function of the current state and action; the
stochasticity comes from the choice of the action. In RL, the environments are often
stochastic themselves. Again, this has no practical impact.
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Table 2: Fine-grained connections between variational inference and reinforcement learning.
RL VIMDP
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4.3 Exploiting structure in the inference problem using techniques from RL

This notation makes the connection to reinforcement learning more stringent and allows us to lever-
age approaches developed in RL to mitigate the high variance of the REINFORCE estimator:

Variance reduction with baselines: Two simple insights can reduce the variance of (9): (a) Only
rewards that succeed an action (and thus have been caused by it) are informative wrt. that action.
(b) We can compare the sampled returns to a reference (or baseline). The result is the following
estimate for the gradient:
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where b
k

is an arbitrary function of the latent variable z
k�1

(note that it must not depend on any
z�k

). It is often a learned function. Both modifications leave the gradient estimate unchanged in
expectation (this is due to the fact that the integral of a grad log-probability density function is
always 0, see appendix A) but affect its variance. One intuitive and convenient choice for b

k

is an
approximation to the value function (see [22]) which is defined as the future expected return from
time k in state z as V
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Variance reduction with value functions: State-value functions aim to summarize the average
future return incurred at step k in a state z
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The gradient in eq. (12) can now be rewritten as:
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In practice we do not know V ✓ but we can learn an approximation ˆV � with parame-
ters �. In the simplest case this is achieved by “regression on returns”, i.e. we minimize
E
q(z|x)

⇥
(R

k+1

� V �

(x, z
k

))

2

⇤
, but it can also be achieved by a bootstrapped regression, akin to

temporal difference learning in RL (e.g. [22]).

5 Conclusion
In this abstract we have provided a new view of inference as reinforcement learning. We hope this
will provide inspiration to VI practitioners to create new inference techniques inspired by reinforce-
ment learning. We exemplify this with two specific strategies (baselines and value functions). Many
other concepts in RL can in principle be used in variational inference, such as temporal difference
methods or exploration, and we hope to show relevance of those ideas in future work. In this abstract
we have focused on the score function estimator which makes no assumption about differentiability,
but a similar mapping applicable to and can be combined with differentiable models and associated
techniques [9, 21, 24].
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A Score Function Estimator

The score function trick simply uses the equality d log p✓(y)
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to rewrite an integral as an

expectation. Assuming that dp✓(y)

d✓

exists and is continuous, we have

d

d✓

Z
p
✓

(y)f(y)dy =

Z

y

dp
✓

(y)

d✓
f(y)dy

=

Z

y

d log p
✓

(y)

d✓
p
✓

(y)f(y) = E
p✓(y)


d log p

✓

(y)

d✓
f(y)

�
. (16)

By using the appropriate y, p
✓

(y) and f(y) we recover the REINFORCE estimator for RL and score
function for variational inference. Also note that if f(y) is a constant f with respect to y, then the
expression is clearly 0, since the integral evaluates to the constant f .

B General Case

In this appendix, we will detail a general graphical model extension of the Markov chain framework
considered in section 4.2. We start by a sequential point of view, leveraging some but not all the
structure found in p and q, and follow by the more complex graph point of view, using the conceptual
framework of stochastic computation graphs (SCG) [21].

B.1 Sequential view

Let us assume that both x and z are multi-dimensional (with respective dimensions M and K) and
that the x

j

and z
i

can be arranged into a directed acyclic graph Gp. Because x and z play very
similar roles in what follows, for simplicity of notation, let y

j

represent a variable that could be a
single latent z
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or x
j
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j

= z
j
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) represents the subset of (z, x) that form the immediate parents of the variable y
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in the graph Gp. It follows that log p(x, z) can be decomposed as a sum of functions r
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It is natural to decompose q into a product of conditional distributions, analogously to p. Arranging
the z

i

into a directed acyclic graph Gq we can write
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where ˜h
i

denote the parents of z
i

according to Gq (note that in order for inference to take the data
x into account, the posterior histories ˜h will typically include x or a subset of it). The log posterior
log q defines a second set of reward functions r̃

k

(s̃
k

) = � log q
✓
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|˜h
k

, x).

Note that the structure of dependencies between variables according to Gp and Gq need not to be
identical. Furthermore, the sampling order for Gq is arbitrary as long as no variable is sampled
before its parents. We choose an ordering of variables in Gq consistent with the partial ordering
imposed by the graph, and suppose latent variables will be sampled sequentially in that order.

Using the notation defined above, the variational objective function is
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The equation above does not make clear the sequential nature of reward accumulation, but it can
be made apparent with a simple rule: if, after sampling the first k variables z

1

, . . . , z
k

, a particular
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reward function can be computed, that corresponding reward is added to the instantaneous reward at
time k. Formally, for each j, define t(j) = min{k : s

j

⇢ {z
1

, z
2

, . . . , z
k

}}. Then, letting

r
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we obtain:
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The formal MDP state at step k is the latent history H
k

= (z
1

, . . . , z
k

); it’s a growing set, but the
policy does not have to depend on the entire policy directly (it can for instance use a compressed his-
tory encoded with a recurrent neural network); in other words, we can make the MDP a POMDP by
making the observation be a subset or function of the actual MDP state. Furthermore, at time k, any
z
i

which does not participate either a in future reward r
>k

or conditional probability q
✓

(z
>k

|h(z
>k

)

can be removed from the state. For finite order Markov models, this implies the MDP state is always
finite dimensional (as in the main body of this abstract).

B.2 Structured view

We can further refine our model by not seeing the latents as sequential, but instead by only consid-
ering the graph structure induced by Gq . This is made easier by modifying the posterior graph Gq

into a stochastic computation graph Sq . In order to do so, we simply add reward nodes to the graph:
each reward r

j

(resp. r̃
k

) becomes a node, and is a deterministic function of its variable set s
j

(resp.
s̃
k

). To further simplify notation, we no longer make a distinction between r
j

and r̃
k

, and consider
each reward as its own variable r, deterministic function r(s) of its parents s = h(r). We let R be
the set (of cardinality 2K +M ) of reward functions. Finally, we abuse notations and also let Gq be
the set of all latent variable indices (note that we are not using any particular ordering anymore).

The stochastic gradient for the variational cost is given by :
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We now explore how to exploit the graph structure. For each latent variable z
v

in our stochastic
computation graph Sq , another node n (either a latent variable or a reward node) is called a non-
descendant of z

v

if it can be computed without sampling z
v

first (in other words, h(n) does not
include any variable which depends, directly or indirectly, stochastically or deterministically, on
z
v

). Otherwise, it is called a descendant node. Intuitively, descendant nodes of z
v

are ‘downstream’
from z

k

in the computation graph. Also, if n is a descendant of m, we say that m is an ancestor of
n (ancestors always include parents). We let C(z

v

) be the set of all nondescendant variables of z
v

,
D(z

v

) the set of descendants of z, and D+

(z
v

) = (z
v

,D(z
v

)). Note that C(z
v

) [D+

(z
v

) is the set
of all latent variables. For any r an element of C(z

v

)

E
z⇠q✓


@

@✓
log q

✓

(z
v

|h(z
v

))r(s)

�
=EC(zv)


ED+

(zv)|C(zv)


@

@✓
log q

✓

(z
v

|h(z
v

))r(s)

��

=EC(zv)


r(s) ED+

(zv)|C(zv)


@

@✓
log q

✓

(z
v

|h(z
v

))

��

=0,

where the second equality comes from the fact that r(s) is a deterministic function of C(z
v

), and the
third equality comes from the fact that z

v

is independent from its nondescendants given its parents
and from the following:

ED+
(zv)|C(zv)


@

@✓
log q

✓

(z
v

|h(z
v

))

�
=E

zv|h(zv)


@

@✓
log q

✓

(z
v

|h(z
v

))

�
(23)

=

@

@✓

Z

zv

q
✓

(z
v

|h(z
v

)) =

@

@✓
1 = 0. (24)
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We conclude that any r which is not a descendant of z can be excluded from the gradient term
corresponding to z. Letting R(z

v

) =

P
r2R\D(zv)

r, we obtain the stronger form of the stochastic
gradient:

@L(q
✓

)

@✓
=

X

v2Gq

E
z⇠q✓


@

@✓
log q

✓

(z
v

|h(z
v

))R(z
v

)

�
. (25)

This formula is the generalization of (12), without baseline or value function. In the next section,
we see how to introduce those notions for the stochastic computation graph framework.

B.3 Value functions and critics for Stochastic Computation Graphs

Consider again equation (25), and let use total expectation again, but this time with the set of z
v

, and
its parents h(z

v

). Let O(z
v

) be the set of variables other than z
v

and its parents. Also, let V (h(z
v

))

be an arbitrary function of the parents of z
v

. We have:

E
z


@

@✓
log q

✓

(z
v

|h(z
v

))R(z
v

)

�
=E

h(zv)


E
zv|h(zv)


EO(zv)|zv,h(zv)


@

@✓
log q

✓

(z
v

|h(z
v

))R(z
v

)

���

=E
h(zv)


E
zv|h(zv)


@

@✓
log q

✓

(z
v

|h(z
v

)) EO(zv)|zv,h(zv) [R(z
v

)]

��

=E
h(zv)


E
zv|h(zv)


@

@✓
log q

✓

(z
v

|h(z
v

))Q(z
v

, h(z
v

))

��

=E
h(zv)


E
zv|h(zv)


@

@✓
log q

✓

(z
v

|h(z
v

))

⇣
Q(z

v

, h(z
v

))� V (h(z
v

))

⌘��

=E
z


@

@✓
log q

✓

(z
v

|h(z
v

))

⇣
Q(z

v

, h(z
v

))� V (h(z
v

))

⌘�
,

where we have defined the critic:

Q(z
v

, h(z
v

)) = EO(zv)|zv,h(zv) [R(z
v

)] . (26)

The first equality follows the law of total expectation, used twice. The second equality follows from
the fact that conditional on z

v

, h(z
v

), @

@✓

log q
✓

(z
v

|h(z
v

)) is a constant. The third equality defines
from the definition of the critic. The fourth follows from the fact that

E
zv|h(zv)


@

@✓
log q

✓

(z
v

|h(z
v

))V (h(z
v

))

�
= 0, (27)

using an identical argument to last section. We finish by suggesting how to evaluate the critic
by regression on return: suppose we have a function approximator Q

�

(z
v

, h(z
v

)) and we want to
minimize the weighted squared error

E
zv,h(zv)⇠q✓

h�
Q

�

(z
v

, h(z
v

))� EO(zv)|zv,h(zv) [R(z
v

)]

�
2

i
. (28)

The gradient with respect to � is

E
zv,h(zv)⇠q✓


@

@�
Q

�

(z
v

, h(z
v

))

�
Q

�

(z
v

, h(z
v

))� EO(zv)|zv,h(zv) [R(z
v

)]

��
, (29)

where (z
v

, h(z
v

)) is sampled from q
✓

(z
v

, h(z
v

)). Since Q
�

(z
v

, h(z
v

)) is a constant of (z
v

, h(z
v

)),
this is also equal to:

E
zv,h(zv)⇠q✓


EO(zv)|zv,h(zv)


@

@�
Q

�

(z
v

, h(z
v

)) (Q
�

(z
v

, h(z
v

))�R(z
v

))

��
, (30)

which is finally equal to

E
z⇠q✓


@

@�
Q

�

(z
v

, h(z
v

)) (Q
�

(z
v

, h(z
v

))�R(z
v

))

�
, (31)

which can simply be computed by forward sampling from q
✓

(z).
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