
Quantifying Statistical Interdependence

by Message Passing on Graphs

PART I: One-Dimensional Point Processes

J. Dauwels a,b,∗,1F. Vialatte cT. Weber dA. Cichocki c

aLaboratory for Information and Decision Systems, Massachusetts Institute of

Technology, Cambridge, MA.

bAmari Research Unit, RIKEN Brain Science Institute, Saitama, Japan.

cLaboratory for Advanced Brain Signal Processing, RIKEN Brain Science

Institute, Saitama, Japan.

dOperations Research Center, Massachusetts Institute of Technology, Cambridge,

MA.

Abstract

We present a novel approach to quantify the statistical interdependence of two time
series, referred to as “stochastic event synchrony” (SES). As a first step, one extracts
“events” from the two given time series. Next, one tries to align events from one
time series with events from the other. The better the alignment, the more similar
the two time series are considered to be. More precisely, the similarity is quantified
by the following parameters: time delay, variance of the timing jitter, fraction of
“non-coincident” events, and average similarity of the aligned events.

The pairwise alignment and SES parameters are determined by statistical infer-
ence. In particular, the SES parameters are computed by maximum a posteriori
(MAP) estimation, and the pairwise alignment is obtained by applying the max-
product algorithm. This paper (Part I) deals with one-dimensional point processes,
the extension to multi-dimensional point processes is considered in a companion
paper (Part II).

By analyzing surrogate data, it is demonstrated that SES is able quantify both
timing precision and event reliability more robustly than classical measures. As an
illustration, neuronal spike data generated by the Morris-Lecar neuron model is
considered.

Key words: timing precision, event reliability, stochastic event synchrony,
Victor-Purpura distance metric, van Rossum distance metric, Schreiber similarity
measure, Hunter-Milton similarity measure, event synchronization measure,
coincident event, maximum a posteriori estimation, spike train, Morris-Lecar
neuron model

Preprint submitted to Neural Computation 8 December 2008

1 Introduction

Quantifying the interdependence between time series is an important yet chal-
lenging problem. Although it is straightforward to quantify linear dependen-
cies, the extension to non-linear correlations is far from trivial. A variety of
approaches have been proposed, stemming from research fields as diverse as
physics, statistics, signal processing, and information theory (see, e.g., (Stam,
2005; Quiroga et al., 2002; Pereda et al., 2005; Kreuz et al., 2007; Tiesinga et

al., 2008)).

In this paper, we propose a novel measure to quantify the interdependence be-
tween two point processes, referred to as “stochastic event synchrony” (SES);
it consists of the following parameters: time delay, variance of the timing jitter,
fraction of “non-coincident” events, and average similarity of the events. SES
captures two different aspects of synchrony: timing precision and reliability.
Those concepts can be understood from the following analogy; when you wait
for a train in the station, the train may come at the station or it may not come
at all, for example, it may be out of service due to some mechanical problem.
If the train comes, it may or may not be on time. The former uncertainty is
related to reliability, whereas the latter is related to precision. SES quantifies
precision and reliability by the variance of the timing jitter and the fraction
of the non-coincident events respectively.

The pairwise alignment of point processes is cast as a statistical inference
problem, which is solved by applying the max-product algorithm on a graph-
ical model (Jordan, 1999; Loeliger, 2004; Loeliger et al., 2007). In the case
of one-dimensional point processes, the graphical model is cycle-free. The
max-product algorithm is then equivalent to dynamic programming, and is
guaranteed to find the optimal alignment. For multi-dimensional point pro-
cesses, the max-product algorithm is applied on a cyclic graphical model; this
algorithm yields the optimal alignment as long as the optimal alignment is
unique. This paper (Part I) deals with one-dimensional point processes, the
companion paper (Part II) considers the extension to multi-dimensional point
processes.

Although the method may be applied to any kind of time series (e.g., from fi-

∗ Corresponding author.
Email addresses: justin@dauwels.com (J. Dauwels),

fvialatte@brain.riken.jp (F. Vialatte), theo w@mit.edu (T. Weber),
cia@brain.riken.jp (A. Cichocki).
1 J.D. was in part supported by post-doctoral fellowships from the Japanese Society
for the Promotion of Science (JSPS), the King Baudouin Foundation, and the Bel-
gian American Educational Foundation (BAEF). Part of this work was carried out
while J.D. and T.W. were at the RIKEN Brain Science Institute, Saitama, Japan.

2

nance, oceanography, and seismology), in this paper and the companion paper,
we will solely consider time series that occur in the context of neuroscience.
Synchrony is indeed an important topic in neuroscience. For instance, it is
hotly debated whether the synchronous firing of neurons plays a role in cogni-
tion (Varela et al., 2001) and even in consciousness (Singer, 2001; Crick et al.,
2003). The synchronous firing paradigm has also attracted substantial atten-
tion in both the experimental (e.g., (Abeles et al., 1993)) and the theoretical
neuroscience literature (e.g., (von der Malsburg, 1981; Amari et al., 2003)).
Moreover, medical studies have reported that many neurophysiological dis-
eases (such as Alzheimer’s disease) are often associated with abnormalities in
neural synchrony (Matsuda et al., 2001; Jeong, 2004). Therefore, the proposed
method may be helpful to diagnose such mental disorders. In the companion
paper (Part II), we will present promising results on the early prediction of
Alzheimer’s disease based on electroencephalograms (EEG).

This paper considers the interdependence between two point processes. The
proposed methods, however, can be extended to a collection of point processes.
This extension is non-trivial: aligning a collection of point processes involves a
significantly more complex combinatorial optimization problem; the optimal
alignment becomes in general intractable. Therefore, one needs to resort to
approximate inference methods. Those issues go beyond the scope of this paper
and also the companion paper, they will be addressed in a future report.

This paper is organized as follows. In the next section, we introduce SES for
the case of one-dimensional point processes. Then we describe the underlying
statistical model (Section 3) and explain how one can perform inference in
that model (Section 4). In Section 5, we review several classical (dis)similarity
measures for one-dimensional point process, since they will serve as bench-
mark for SES; more precisely, we will consider the Victor-Purpura distance
metric (Victor et al., 1997; Aronov, 2003; Kreuz et al., 2007; Victor et al.,
2007), the van Rossum distance metric (Van Rossum, 2001), the Schreiber et

al. similarity measure (Schreiber et al., 2003), the Hunter-Milton similarity
measure (Hunter et al., 2003), and the event synchronization measure pro-
posed in (Quiroga et al., 2002). In Section 6 we investigate the robustness
and reliability of those classical (dis)similarity measures and SES by means
of surrogate data. In Section 7 we consider an application related to neuro-
science: we quantify the firing reliability of Morris-Lecar type I and type II
neurons using classical methods and SES. We offer some concluding remarks
in Section 8.

3

2 Principle

Let us consider the one-dimensional point processes (“event strings”) x and
x′ in Fig. 1(a); ignore y and z for now. They could be point processes in
time, e.g., (x1 = 1.3s, x2 = 5.8s, . . .) or space, e.g., (x1 = 1.3m, x2 = 5.8m,
. . .), or any other dimension. We wish to quantify to which extent x and x′

are synchronized. Intuitively speaking, two event strings can be considered as
synchronous (or “locked”) if they are identical apart from: (i) a time shift δt;
(ii) small deviations in the event occurrence times (“event timing jitter”); (iii)
a few event insertions and/or deletions. More precisely, for two event strings to
be synchronous, the event timing jitter should be significantly smaller than the
average inter-event time, and the number of deletions and insertions should
comprise only a small fraction of the total number of events. This intuitive
concept of synchrony is illustrated in Fig. 1(a). The event string x′ is obtained
from event string x by successively shifting x over δt (resulting in y), slightly
perturbing the event occurrence times (resulting in z), and eventually, by
adding (plus sign) and deleting (minus sign) events, resulting in x′. Adding and
deleting events in z leads to “non-coincident” events in x and x′ (see Fig. 1(a);
non-coincident events are marked in red): a non-coincident event in x is an
event that cannot be paired with an event in x′ and vice versa.

The above intuitive reasoning leads to a novel measure for synchrony be-
tween two event strings, i.e., “stochastic event synchrony” (SES); for the one-
dimensional case, it is defined as the triplet (δt, st, ρ), where st is the variance
of the (event) timing jitter, and ρ is the percentage of non-coincident events

ρ
△

=
nnon-co + n′

non-co

n + n′
, (1)

with n and n′ the total number of events in x and x′ respectively, and nnon-co

and n′

non-co the total number of non-coincident events in x and x′ respectively.
We will denote the standard deviation of the (event) timing jitter by σt, and
hence st = σ2

t . SES is related to the metrics (“distances” or “kernels”) pro-
posed in (Victor et al., 1997; Aronov, 2003; Kreuz et al., 2007; Victor et al.,
2007; Shpigelman et al., 2005; Eichhorn et al., 2003; Schrauwen et al., 2007),
which are single numbers that quantify the similarity of event strings. In con-
trast, we characterize synchrony by means of three parameters; this allows
us to distinguish two fundamentally different types of synchrony, as we will
demonstrate in Section 7 (see Fig. 13). Moreover, our approach is rooted in
statistical inference, in contrast to the metrics of (Victor et al., 1997; Aronov,
2003; Kreuz et al., 2007; Victor et al., 2007; Shpigelman et al., 2005; Eichhorn
et al., 2003; Schrauwen et al., 2007), which are derived either from optimiza-
tion theory (Victor et al., 1997; Aronov, 2003; Kreuz et al., 2007; Victor et al.,
2007) or in the context of kernel machines (Shpigelman et al., 2005; Eichhorn
et al., 2003; Schrauwen et al., 2007).

4

δt

x

y

z

x′

(a) Transforming x into x′: first the events of x are
shifted over δt, resulting in y, then their occurrence
time is slightly perturbed (with variance st), result-
ing in z, and next some events of z are deleted and
some events are inserted (both with probability pd),
resulting in x′.

T0

x

v

z′

x′

1

1

1

0000000

0000000

0

2

2

3

3

4

4 5

6

6

7

7

8

8

9

9i

i′

b

b′

δt

2

δt

2

z

(b) Symmetric procedure to generate x and x′: one first generates a process v, next
one makes two identical copies of v and shifts those over −δt/2 and δt/2 respectively;
the events of the resulting point process are slightly shifted (with variance st/2), and
some of those events are deleted (with probability pd), resulting in x and x′.

Fig. 1. One-dimensional stochastic event synchrony: an asymmetric (top) and sym-
metric (bottom) procedure relating x to x′.

3 Statistical Model

We compute the SES parameters by performing inference in a generative prob-
abilistic model for the sequences x and x′. In order to describe that model, we
consider a symmetric procedure to generate x and x′, depicted in Fig. 1(b).
Note that the procedure of Fig. 1(a) corresponds to a conditional distribution

5

p(x′|x; δt, st), which is asymmetric in x and x′. First, one generates an event
string v of length ℓ, where the events vk are mutually independent and uni-
formly distributed in [0, T0]. The strings z and z′ are generated by delaying
v over −δt/2 and δt/2 respectively and by (slightly) perturbing the result-
ing event occurrence times. We will model those perturbations as zero-mean
Gaussian random variables with variance st/2. Next some of the events in z
and z′ are removed, resulting in the sequences x and x′; each event of z and z′

is removed with probability pd (“deletion”), independently of the other events.
We denote by zrk

and z′rk
the events in z and z′ respectively that correspond

to vk. In the example of Fig. 1(b), r = (1, 2, . . . , 10) = r′. Occasionally, a pair
of events (zrk

, z′rk
) is removed (with probability p2

d), referred to as “event-pair
deletion”, but more often either zrk

or z′rk
is removed (“single-event deletion”).

If none of the events (zrk
, z′rk

) is removed, there is an event in x and in x′ that
corresponds to vk; we will denote this event pair by (xjk

, x′

jk
). In the example

of Fig. 1(b), j = (1, 2, 3, 5, 6, 7, 8), and j′ = (2, 3, 4, 5, 6, 7, 8). Note that if zrk

is deleted but not z′rk
, the corresponding event in x′ becomes a non-coincident

event and vice versa. In the example of Fig. 1(b), the events z1 and z′5 are
deleted (single-event deletions), and as a result, x′

1 and x5 are non-coincident
events (marked in red in Fig. 1(b)); also the pair (z10, z

′

10) is removed (event-
pair deletion). It is easily verified that the expected length of the sequences x
and x′ is (1 − pd)ℓ, and that the expected value of ρ (cf. (1)) is pd.

It is noteworthy that this procedure of generating the pair of point processes
x and x′ may easily be extended to a collection of point processes. However,
inference in the resulting probabilistic model is only tractable for pairs of
point processes. If one considers more than two point processes, one needs to
resort to approximate inference techniques; such methods will be presented in
a future report.

From now on, we will assume that the event pairs (xjk
, x′

j′
k

) are ordered, i.e.,

(xjk
, x′

j′
k

) occurs after the pair (xjk−1
, x′

j′
k−1

), or more precisely, xjk
≥ xjk−1

and x′

j′
k

≥ x′

j′
k−1

(for all k). This assumption is reasonable, since without it,

there would be an unwieldy number of possible ways to generate the same
point processes x and x′, and therefore, the problem of inferring the SES pa-
rameters would be ill posed. In fact, virtually all measures of event synchrony
make use of this assumption, either explicitly or implicitly (see Section 5 for
a brief review). However, this assumption has some important consequences,
as illustrated in Fig. 2; if st is large, with high probability events in x and x′

will not be ordered in time (see Fig. 2(a)). Ignoring this fact will result in es-
timates of st that are smaller than the true value st. Obviously, this issue not
only concerns SES but event synchrony in general. In addition, some event
deletions may be ignored: in Fig. 2(a) one of the last two events of x (and
likewise x′) is non-coincident, however, in the procedure of Fig. 2(b) they are
both coincident. The latter generative procedure is simpler in the sense that it

6

involves less deletions and the perturbations are slightly smaller. As a result,
the parameter ρ (and hence also pd) is generally underestimated. Again, this
problem not only concerns SES but any measure that quantifies how reliably
events occur (see Section 6). Both issues may be resolved to some extent if one
incorporates additional information. For example, in the case of spike trains,
one may incorporate information about the spike shape; each spike is then
described by its occurrence time and some additional parameters, e.g., shape
parameters such as height and width. SES can be extended to incorporate
such additional information, as we describe in the companion paper (Part II).
When matching events of x and x′, we then no longer assume that those events
are ordered in time, i.e., we allow reversals as in Fig. 2(a).

T0

x

v

z′

x′

0
δt

2

δt

2

z

(a) A first procedure to generate x and x′; the sequence x′ is not ordered, since two
events of x′ are reversed as indicated by the arrows; note that one of the two last
events in x (and likewise x′) is non-coincident.

T0

x

v

z′

x′

0
δt

2

δt

2

z

(b) A second procedure to generate the same point processes x and x′ without order
reversal; the two last events of x and x′ are now considered to be coincident.

Fig. 2. Inherent ambiguity in event synchrony: two equivalent procedures to generate
the point processes x and x′.

In the following we discuss the statistical model that corresponds to the above
symmetric procedure of generating the pair of point processes x and x′. For the
sake of clarity, we listed in Table 1 the most relevant variables and parameters

7

Symbol Explanation

x and x′ the two given point processes

v hidden sequence from which the observed sequences x and x′

are generated

z and z′ point processes obtained by shifting v over δt/2 and −δt/2 resp.

and perturbing the timing of the resulting sequences (variance st/2)

b and b′ binary sequences that indicate whether events in x and x′ resp.

are coincident or not

i and i′ indices of the events in v that generated x and x′ resp.

j and j′ indices of the coincident events in x and x′ resp.

n and n′ length of x and x′ resp.

ndel and n′

del number of deletions in z and z′ resp.

ntot
del total number of deletions in z and z′

ndel,single and n′

del,single number of single-event deletions in z and z′ resp.

ndel,pair and n′

del,pair number of event-pair deletions in z and z′ resp.

nnon-co and n′

non-co number of non-coincident events in x and x′ resp.

ntot
non-co total number of non-coincident events in x and x′

ℓ length of v

δt timing offset between x and x′

st timing jitter between x and x′

Table 1
List of variables and parameters associated with model p(x, x′, b, b′, v, δt, st, ℓ) (2).

associated with that model. We will now clarify each of those variables and
parameters. The statistical model takes the form:

p(x, x′, b, b′, v, δt, st, ℓ) = p(x|b, v, δt, st)p(x′|b′, v, δt, st)p(b, b′|ℓ)
· p(v|ℓ)p(ℓ)p(δt)p(st), (2)

where b and b′ are binary strings that indicate whether the events in x and
x′ are coincident. More specifically, bk = 1 if xk is non-coincident, bk = 0
otherwise, and likewise for b′k. For mathematical convenience, we choose a
geometric prior for the length ℓ:

p(ℓ) = (1 − λT0)(λT0)
ℓ, (3)

with λT0 ∈ (0, 1), as illustrated in Fig. 3(a). Since the events vk are assumed

8

to be mutually independent and uniformly distributed in [0, T0], we have:

p(v|ℓ) =
ℓ
∏

k=1

p(vk|ℓ) =
ℓ
∏

k=1

T−1
0 = T−ℓ

0 . (4)

Therefore
p(v, ℓ) = p(v|ℓ)p(ℓ) = (1 − λT0)λ

ℓ. (5)

At first sight, it may seem more natural to model v as a Poisson process (Gal-
lager, 1996), which corresponds to a model p(v, ℓ) = p(v|ℓ)p(ℓ), where p(v|ℓ)
is also given by (4) but with different prior p(ℓ) for the number of events ℓ
(see Fig. 3(b)), i.e., a Poisson distribution with parameter κT0:

p(ℓ) = e−κT0
(κT0)

ℓ

ℓ!
. (6)

By comparing Fig. 3(a) and Fig. 3(b), it can be seen that a Poisson prior is
more informative than a geometric prior, especially if the parameter λT0 of
the geometric prior takes values close to 1. In fact, among all discrete proba-
bility distributions p(ℓ) supported on {1, 2, 3, . . .} with given expected value
E[ℓ] = L, the geometric distribution with parameter λT0 = 1− 1/L is the one
with the largest entropy. Therefore, if little prior knowledge about the length
ℓ is available, it makes sense to use a geometric prior. On the other hand,
if substantial prior knowledge about ℓ is available, it can in principle read-
ily be encoded by a Poisson prior. However, for our purposes, the prior (6) is
mathematically less convenient. We will come back to this issue later on, more
precisely, below (32) and in Section 4. Therefore, we will adopt a geometric
prior even if there is prior knowledge about ℓ. With that choice of prior, the
estimates of the parameters δt, st and ρ will in principle be less reliable than
with a Poisson prior, since the model does then not incorporate all available
information. However, the resulting loss in reliability is expected to be neg-
ligible: for reasonable lengths ℓ (e.g., ℓ > 30) most information is typically
contained in the observed sequences x and x′ and not in the prior p(ℓ). The
posterior p(ℓ|x, x′) is then tightly concentrated around the true value of ℓ, and
the prior p(ℓ) only slightly vary over the support of p(ℓ|x, x′). Besides this
qualitative argument, we will show experimentally in Section 6 that with a
geometric prior p(ℓ) the obtained estimates of δt, st and ρ are reliable (apart
from biases due to the ambiguity inherent in event synchrony, see Fig. 2).
Interestingly, for both types of priors, the events in v occur to a large extent
independently of each other, since for given length ℓ they are assumed to be
mutually independent and uniformly distributed in [0, T0] (cf. (4)).

We will now continue our discussion of model (2). The prior on the binary
strings b and b′ is given by

p(b, b′|ℓ) = p(b|ℓ)p(b′|ℓ) = (1 − pd)
n+n′

p2ℓ−n−n′

d = (1 − pd)
n+n′

p
ntot

del
d , (7)

9

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

λ T
0
 = 0.95

λ T
0
 = 0.96

λ T
0
 = 0.97

λ T
0
 = 0.98

λ T
0
 = 0.99

ℓ

p(
ℓ)

(a) Geometric prior (3) with λT0 =
0.95, 0.96, . . . , 0.99.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

κ T
0
 = 10

κ T
0
 = 20

κ T
0
 = 30

κ T
0
 = 40

κ T
0
 = 50

ℓ

p(
ℓ)

(b) Poisson prior (6) with κT0 =
10, 20, . . . , 50.

Fig. 3. Prior distributions p(ℓ) for ℓ: geometric distribution (left) and Poisson dis-
tribution (right).

where ntot
del is the total number of deleted events in x and x′:

ntot
del = ndel + n′

del = 2ℓ − n − n′, (8)

with ndel the number of deleted events in x:

ndel = ℓ − n, (9)

and similarly, n′

del the number of deleted events in x′:

n′

del = ℓ − n′. (10)

For later convenience, we will now write ℓ as a function of b and b′. We first
expand ndel, the number of deleted events in z, as ndel = ndel,single + ndel,pair

where ndel,single is the number of single-event deletions in z and ndel,pair is
the number of event-pair deletions. Likewise, we can write n′

del = n′

del,single +
ndel,pair, where n′

del,single is the number of single-event deletions in z′. Since a
single deletion in z results in a non-coincident event in x′, it follows:

ndel,single = n′

non-co =
n′

∑

k=1

b′k, (11)

and likewise

n′

del,single = nnon-co =
n
∑

k=1

bk. (12)

As a consequence, we have ndel = n′

non-co +ndel,pair and n′

del = nnon-co +ndel,pair,
and therefore:

ntot
del = nnon-co + n′

non-co + 2 ndel,pair = ntot
non-co + 2 ndel,pair, (13)

10

with ntot
non-co = nnon-co + n′

non-co. Combining (13) with (9) and (10), results
eventually in the following expression for ℓ:

ℓ =
ntot

del + n + n′

2
=

ntot
non-co

2
+ ndel,pair +

n + n′

2
. (14)

Note that only the first term in the RHS depends on b and b′. In the example
of Fig. 1(b), ℓ = 10, n = 8 = n′, ndel = 2 = n′

del, ntot
del = 4, ndel,single = 1 =

n′

del,single, ndel,pair = 1, and ntot
non-co = 2.

Let us now return to model (2); the conditional distributions in x and x′ are
equal to:

p(x|b, v, δt, st) =
n
∏

k=1

(

N
(

xk − vik ;−
δt

2
,
st

2

)

)

(15)

p(x′|b′, v, δt, st) =
n′

∏

k=1

(

N
(

x′

k − vi′
k
;
δt

2
,
st

2

)

)

, (16)

where vik is the event in v that corresponds to xk and likewise vi′
k
, and

N (x; m, s) is a univariate Gaussian distribution with mean m and variance s.
In the example of Fig. 1(b), i = (2, 3, 4, 5, 6, 7, 8, 9) and i′ = (1, 2, 3, 4, 6, 7, 8, 9).
For the sake of simplicity, we adopt improper priors p(δt) = 1 = p(st).

Substituting (5), (7), (15), and (16) in (2) amounts to:

p(x, x′, b, b′, v, δt, st, ℓ) =
n
∏

k=1

(

N
(

xk − vik ;−
δt

2
,
st

2

)

)

·
n′

∏

k=1

(

N
(

x′

k − vi′
k
;
δt

2
,
st

2

)

)

· (1 − pd)
n+n′

p
ntot

del
d (1 − λT0)λ

ℓ. (17)

We will now marginalize (17) w.r.t. v, later we will marginalize that model
w.r.t. the length ℓ. For a given vk three cases are possible:

• The event was not deleted from neither x and x′, the corresponding events
in x and x′ are denoted by xjk

and x′

j′
k

; in (17) the following term appears:

(

N
(

x′

j′
k

− vk;
δt

2
,
st

2

)

)

.

(

N
(

xjk
− vk;−

δt

2
,
st

2

)

)

. (18)

Integrating this term over vk yields the term N
(

xjk
− xj′

k
; δt, st

)

. Note that

there are ntot
co such terms, where ntot

co is the total number of coincident event
pairs:

ntot
co = n − nnon-co = n′ − n′

non-co. (19)

11

• The event was deleted once (from either x or x′). In (17) there is only one

Gaussian term that corresponds to vk. Integrating that term over vk results
in the term 1.

• The event was deleted twice (from x and x′). There are no Gaussian terms
associated with vk in (17), therefore, the expression (17) may be considered
as constant w.r.t. vk. Integrating (17) over vk then leads to a term T0. There
are ndel,pair such terms.

Eventually, we obtain:

p(x, x′, b, b′, δt, st, ℓ) =
∫

p(x, x′, b, b′, v, δt, st, ℓ)dv

=
ntot

co
∏

k=1

N (x′

j′
k

− xjk
; δt, st)(1 − pd)

n+n′

p
ntot

del
d

· (1 − λT0)λ
ℓT

ndel,pair

0 . (20)

Note that we can marginalize over v analytically (cf. (20)) because of two
reasons:

• We have chosen a uniform conditional distribution p(v|ℓ) (4),
• We model the offsets between an event vk and the corresponding events xℓ

and x′

ℓ′ in x and x′ respectively as Gaussian random variables. Therefore,
also the offset between the two events xℓ and x′

ℓ′ is Gaussian distributed.

We wish to point out that, more generally, the offset between xℓ and x′

ℓ′ may
be modeled by any infinite divisible distribution. A probability distribution f
on the real line is by definition infinitely divisible if the following holds: if X
is any random variable whose distribution is f , then for every positive integer
m there exist m independent identically distributed random variables X1, ...,
Xm whose sum is equal in distribution to X. Note that those m other random
variables do not usually have the same probability distribution as X. In our
setting, the offset between xℓ and x′

ℓ′ takes the role of X; we have m = 2, and
the variables X1 and X2 stand for the offset between vk and xℓ and the offset
between x′

ℓ′ and vk respectively. If the distribution f of the offset between xℓ

and x′

ℓ′ is infinite divisible, we can decompose that offset as the sum of the
offset between vk and xℓ and the offset between x′

ℓ′ and vk. Indeed, since f
is assumed to be infinite divisible, there exists a distribution f̃ such that the
offset between vk and xℓ and the offset between x′

ℓ′ and vk are independently
distributed according to f̃ and their sum is distributed according to f .

Examples of infinitely divisible distributions are the Gaussian distribution
and the Cauchy distribution, and all other members of the stable distribu-
tion family; the latter is a four-parameter family of continuous probability
distributions that has the property of stability : If a number of independent
identically distributed random variables have a stable distribution, then a lin-

12

ear combination of these variables will have the same distribution, except for
possibly different shift and scale parameters (Zolotarev, 1986). We will not
further consider the extension to general infinite divisible distributions, since
Gaussian offsets suffice for our purposes.

We now return to model (20). Substituting (13) and (14) in (20) leads to:

p(x, x′, b, b′, δt, st, ℓ) =
ntot

co
∏

k=1

N (x′

j′
k

− xjk
; δt, st)

(√
λ (1 − pd)

)n+n′

·
(√

λ pd

)ntot
non-co

(1 − λT0)
(

p2
d λT0

)ndel,pair
. (21)

Now we marginalize over the length ℓ. The length can be decomposed accord-
ing to (14); the third term in (14) is fixed, since n and n′ are the length of
the given point processes x and x′ respectively. The first term in (14) is fixed
for given b and b′. Therefore, marginalizing p(x, x′, b, b′, δt, st, ℓ) (21) over ℓ is
equivalent to marginalizing over ndel,pair:

p(x, x′, b, b′, δt, st) =
∞
∑

ℓ=0

p(x, x′, b, b′, δt, st, ℓ) (22)

=
∞
∑

ndel,pair=0

p(x, x′, b, b′, δt, st, ℓ) (23)

=
ntot

co
∏

k=1

N (x′

j′
k

− xjk
; δt, st)

(√
λ (1 − pd)

)n+n′

·
(√

λ pd

)ntot
non-co

(1 − λT0)
∞
∑

ndel,pair=0

(

p2
d λT0

)ndel,pair
(24)

=
ntot

co
∏

k=1

N (x′

j′
k

− xjk
; δt, st)

(√
λ (1 − pd)

)n+n′

·
(√

λ pd

)ntot
non-co

(1 − λT0)
1

1 − p2
d λT0

. (25)

We wish to point out that in (24) we have a sum of a geometric series; since
|p2

d λT0| < 1, we can apply the well-known formula for the sum of a geometric
series, resulting in (25). We can rewrite the latter expression as:

p(x, x′, b, b′, δt, st) = γ βntot
non-co

ntot
co
∏

k=1

N (x′

j′
k

− xjk
; δt, st), (26)

with β = pd

√
λ and

γ =
(√

λ (1 − pd)
)n+n′

(1 − λT0)
1

1 − p2
d λT0

. (27)

The constant γ does not depend on b and b′, and therefore, it is irrelevant
for estimating b, b′ and the SES parameters ρ, δt, and st; we will discard it

13

in the following. On the other hand, the exponent of β in (26) does clearly
depend on b and b′ (cf. (11) and (12)). Therefore, the parameter β affects the
inference of b, b′ and the SES parameters. In Section 7, we explain how the
parameter β may be determined from given sequences x and x′. Moreover, we
will interpret the parameter β in terms of cost functions (see below (28)); the
expression log β is part of the cost associated to each non-coincident event.

After marginalizing w.r.t. v and ℓ, we obtain a model p(x, x′, b, b′, δt, st) (cf. (26))
that is symmetric in x and x′. In the following, we will denote model (26) by
p(x, x′, j, j′, δt, st) instead of p(x, x′, b, b′, δt, st), since it is more natural to de-
scribe that model in terms of j and j′ than in terms of b and b′ (cf. RHS
of (26)). The sequences b and b′ may directly be obtained from j and j′: the
variables bk (for all k) equals one if k appears in the sequence j and is zero
otherwise, the variables b′k (for all k) may be obtained along the same lines.

It is instructive to consider the negative logarithm of (26):

− log p(x, x′, j, j′, δt, st) = −ntot
non-co log β +

1

2st

ntot
co
∑

k=1

(x′

j′
k

− xjk
− δt)

2

+
ntot

co

2
log 2πst + ζ, (28)

where ζ is an irrelevant constant. As a consequence of (19), we have

ntot
co =

n + n′ − ntot
non-co

2
, (29)

and we can rewrite (28) as:

− log p(x, x′, j, j′, δt, st) = −ntot
non-co

(

log β +
1

4
log 2πst

)

+
1

2st

ntot
co
∑

k=1

(x′

j′
k

− xjk
− δt)

2 + ζ ′, (30)

with ζ ′ = ζ + n+n′

4
log 2πst. Note that ζ ′ does not depend on j and j′, in other

words, it is independent of the assignment of coincident and non-coincident
events. In the following, we investigate how (30) depends on the assignment j
and j′, and ζ ′ is then irrelevant.

The expression (30) may be considered as a cost function that associates
certain costs with coincident and non-coincident events; this viewpoint will
give us insight in how we can minimize (30) (equivalently, maximize (26))
w.r.t. j and j′, for fixed δt and st. The unit cost d(st) associated to each
non-coincident event equals:

d(st) = − log β − 1

4
log 2πst. (31)

14

(a) Two point processes defined on
a contour (black and red).

(b) Non-Euclidean distance be-
tween two events.

Fig. 4. Point processes along a contour; the distance between two events is non-Eu-
clidean.

The unit cost d(xjk
, x′

j′
k

; δt, st) of each event pair (xjk
,x′

j′
k

) is the normalized

Euclidian distance:

d(xjk
, x′

j′
k

; δt, st) =
(x′

j′
k

− xjk
− δt)

2

2st

. (32)

Since the point processes x and x′ of Fig. 1(b) are defined on the real line, the
(normalized) Euclidean distance is indeed a natural metric. In some applica-
tions, the point process may be defined on more general curves (as illustrated
in Fig. 4); in such situations, one may adopt non-Euclidean distance measures.
We are currently exploring such applications; we refer to (Dauwels et al., 2008)
for preliminary results.

We would like to underline that the unit costs d(st) (31) and d(xjk
, x′

j′
k

; δt, st) (32)

are dimensionless. In other words, they do not depend on the unit (e.g., sec-
onds, milliseconds, meters, or millimeters) in which x and x′ are expressed;
this property is obvious for d(xjk

, x′

j′
k

; δt, st), and for d(st) it can be shown as

follows:

d(st) = − log β − 1

4
log 2πst (33)

= − log pd −
1

2
log λ

√
st −

1

4
log 2π. (34)

The parameter pd is dimensionless, the same holds for the product λ
√

st, and
hence also d(st) is dimensionless. Therefore minimizing the cost (30) w.r.t.
the sequences j and j′ (for fixed δt and st), or equivalently, performing MAP
estimation of j and j′ in p(x, x′, j, j′, δt, st, ℓ) (26), will yield the same solutions
ĵ and ĵ′, independent of the units of x and x′. In Section 4 we will explain
how one may estimate j and j′.

By interpreting (30) as a cost function, we also established a connection be-
tween SES and the distance metric of (Victor et al., 1997; Aronov, 2003; Kreuz
et al., 2007; Victor et al., 2007). The latter is also formulated in terms of a cost
function, more precisely, it is determined as the minimum cost associated with
transforming one point process into the other. In this transformation, one is

15

allowed to delete and insert events, and move events over time (cf. Fig. 1(a)),
and there is a cost associated to each of those three basic operations. For the
sake of completeness, we will review the distance metric of (Victor et al., 1997;
Aronov, 2003; Kreuz et al., 2007; Victor et al., 2007) in Section 5.1.

Note also that the Poisson prior (6) leads to a cost that depends non-linearly
on the number of non-coincident events; the cost per non-coincident event is
then not constant but depends on the total number of non-coincident events.
Since a constant cost per non-coincident event is easier to interpret and leads to
a simpler inference algorithm (see Section 4), we decided to use the geometric
prior (3).

4 Statistical Inference

Given event strings x and x′, we wish to infer the parameters δt and st, and the
sequences j and j′ (cf. (26)). From decisions ĵ and ĵ′, one can easily determine
the corresponding decisions b̂ and b̂′; the decision b̂k (for all k) equals one if
k appears in the sequence ĵ and is zero otherwise, the decisions b̂′k (for all k)
may be obtained along the same lines. The decisions b̂ and b̂′ naturally amount
to an estimate of ρ (cf. (1)):

ρ̂
△

=

∑n
k=1 b̂k +

∑n′

k=1 b̂′k
n + n′

. (35)

Moreover, the parameters T0, λ and pd are unknown and need to be chosen
appropriately. Interestingly, they do not need to be specified individually, since
they appear in (26) only through β. The latter serves in practice as a knob
to control the number of non-coincident events; we will address this issue in
Section 7.

There are various ways to jointly infer the SES parameters and sequences j and
j′, perhaps the most natural solution is coordinate descent. First one chooses
initial values δ̂

(0)
t and ŝ

(0)
t , then one alternates the following two update rules

until convergence or until the available time has elapsed:

(ĵ(i+1), ĵ′(i+1)) = argmax
j,j′

p(x, x′, j, j′, δ̂
(i)
t , ŝ

(i)
t) (36)

(δ̂
(i+1)
t , ŝ

(i+1)
t) = argmax

δt,st

p(x, x′, ĵ(i+1), ĵ′(i+1), δt, st). (37)

In Appendix A, we explain how the expressions (36) and (37) can be computed.
In particular, we derive a closed-form expression for (37); we show that (36)
may be obtained by considering paths on a (n+1)× (n′ +1) grid (see Fig. 5),
where each path corresponds to a pair (j, j′); one can associate a cost M to each

16

x1 x2 x3 x4 x5 x6 x7 x8

x′

1

x′

2

x′

3

x′

4

x′

5

x′

6

x′

7

x′

8

0

0

Fig. 5. The (n + 1) × (n′ + 1) grid associated with the point processes x and x′

of Fig. 1; each path on that grid corresponds to a pair (j,j′). The path P shown in
this figure corresponds to the alignment of Fig. 1(b).

path, obtained by adding the costs d(st) of each corresponding non-coincident
event and the costs d(xjk

, x′

j′
k

; δt, st) associated to each pair of coincident events

(xjk
, x′

j′
k

). Finding the pair (ĵ(i+1), ĵ′(i+1)) (36) corresponds to the problem of

determining the minimum-cost path, which may be achieved by means of a
simple recursion. The resulting algorithm is summarized in Table 2.

Note that if one adopts a Poisson prior (6), the expression (36) may no longer
be obtained by determining the minimum-cost path on a grid. In fact, this
expression becomes intractable, and one would need to resort to approximative
methods.

The algorithm is an instance of coordinate descent, which generally is guar-
anteed to converge if the iterated conditional maximizations have unique so-
lutions (cf. (36) (37)) (Bezdek et al., 2002, 1987). The conditional maximiza-
tion (37) has a unique solution (cf. (A.1) and (A.3)); the solution of (36) is in
most practical situations unique. In our experiments (cf. Section 6 and 7), the
algorithm always converged . We will provide numerical results on convergence
in Section 7.

In general, the fixed points of a coordinate descent algorithm are station-
ary points of the objective function at hand. In particular, alternating (36)
and (37) converges to stationary points of p(x, x′, j, j′, δt, st). Since this model
may have numerous stationary points, it may be necessary to run (36) and (37)

with several different initial values δ̂
(0)
t and ŝ

(0)
t , resulting in several fixed points

(ĵ, ĵ′, δ̂t, ŝt). Eventually, one selects the fixed point that has the largest value
p(x, x′, ĵ, ĵ′, δ̂t, ŝt). In practice, one often has prior knowledge about δt and
st. For example, in the case of neural spike trains (see Section 7), the lag
δt is usually not larger than 100ms, similarly, st is typically not larger than
(100ms)2. In most applications, it makes sense to start with the initial value

17

INPUT:

One-dimensional point processes x and x′ and parameters β, δ̂
(0)
t , and ŝ

(0)
t .

ALGORITHM:

Iterate the following two steps until convergence or the available time has elapsed:

(1) Update the alignment (ĵ, ĵ′) by dynamic programming

Compute the matrix M:

Mk,0 = 0 = M0,k′ (for k = 0, 1, . . . , n and k′ = 0, 1, . . . , n′), the other elements
are computed recursively as:

Mk,k′ = min
[

Mk−1,k′ + d
(

ŝ
(i)
t

)

,Mk,k′
−1 + d

(

ŝ
(i)
t

)

,Mk−1,k′
−1 + d

(

xk, x
′

k′ ; δ̂
(i)
t , ŝ

(i)
t

)

]

.

Determine the min-cost sequence (ĵ, ĵ′) by tracing back the decisions in
the recursive updates Mk,k′.

(2) Update the SES parameters:

δ̂
(i+1)
t

△

=
1

n(i+1)

n(i+1)
∑

k=1

x̂
′(i+1)
k − x̂

(i+1)
k ,

ŝ
(i+1)
t

△

=
1

n(i+1)

n(i+1)
∑

k=1

(

x̂
′(i+1)
k − x̂

(i+1)
k − δ̂

(i+1)
t

)2
.

OUTPUT: Alignment (ĵ, ĵ′) and SES parameters ρ̂, δ̂t, and ŝt.

Table 2
Inference algorithm for one-dimensional SES. We refer to Appendix A for its deriva-
tion.

δ̂
(0)
t = 0. However, depending on the available computational resources, one

may run the algorithm with additional initial values δ̂
(0)
t . One may also run the

algorithm with several values of ŝ
(0)
t between 0 and the largest plausible value

(e.g., ŝ
(0)
t = (10ms)2, (20ms)2, . . . , (100ms)2). For the sake of completeness, we

will specify how we selected the initial values δ̂
(0)
t and ŝ

(0)
t in the applications

of Section 6 and 7.

In principle, the computational complexity grows proportional to nn′, i.e., the
product of both sequence lengths. However, one may restrict the state space
to pairs of events that are close to each other, i.e., pairs of events (xjk

, x′

j′
k

)

that fulfill the constraint |xjk
− x′

j′
k

| < δmax
t (for some δmax

t > 0, e.g., δmax
t =

100ms). The paths on the grid of Fig. 5 then remain close to the diagonal, and
only the entries Mk,k′ around the diagonal of M are computed (cf. (A.4)). As
a result, the computational complexity becomes linear in the sequence length.

18

5 Review of Classical Similarity Measures

In this Section, we review some of the most well-known classical (dis)similarity
measures for one-dimensional point processes, including the Victor-Purpura
distance metric (Victor et al., 1997; Aronov, 2003; Kreuz et al., 2007; Victor et

al., 2007), the van Rossum distance metric (Van Rossum, 2001), the Schreiber
et al. similarity measure (Schreiber et al., 2003), the Hunter-Milton similarity
measure (Hunter et al., 2003), and the event synchronization measure proposed
in (Quiroga et al., 2002). For the sake of definiteness, we will discuss the
measures in the context of point processes in time.

5.1 Victor-Purpura spike train metric

The distance metric DV of (Victor et al., 1997; Aronov, 2003; Kreuz et al.,
2007; Victor et al., 2007) is closely related to SES, as we pointed out earlier.
It defines the distance between two point processes as the minimum cost of
transforming one point process into the other. This transformation is carried
out by combining three basic operations: event insertion, event deletion, and
event movement (cf. Fig. 1(a)). The cost of deleting or inserting of an event
is set to one, whereas the cost of moving an event in time is proportional to
the time shift; the proportionality constant CV defines the time scale of the
distance metric.

If CV = 0, the distance metric DV reduces to the difference in number of
events. On the other hand, if CV ≫ 1, the distance quantifies the number
of non-coincident events. Indeed, since for large CV it becomes less favorable
to move events, one transforms one point process into the other mostly by
inserting and deleting events. The cost DV associated to this transformation is
then (approximately) proportional to the number of non-coincident events. In
practice, most events do not perfectly coincide, therefore, in the limit CV ≫ 1
virtually all events are either inserted or deleted in the tranformation from one
point process to the other. In the intermediate regime CV ≈ 1, neighboring
events are treated as coincident, i.e., they no longer need to occur at precisely
the same time. In that regime, DV is similar to the SES parameter ρ.

It is important to realize that CV is not dimensionless. Since the cost CV ∆T
associated with moving an event over ∆T is supposed to be dimensionless,
the unit of CV is the inverse of the unit in which x and x′ are expressed.
For example, if x and x′ are expressed in milliseconds, the condition CV ≈ 1
stands for CV ≈ 10−3ms−1. Note that the metric DV is dimensionless.

If and only if the point processes x and x′ are identical, the distance metric
DV = 0. The time constant τV = 1/CV , which is the inverse of CV , defines

19

the time scale of distance metric DV .

It is noteworthy that in SES, the unit cost of moving an event in time is
quadratic in the time shift (with proportionality constant 1/2st; cf. (32)), in
contrast to the Victor-Purpura metric, where the cost is linear in the time
shift. Note that the proportionality constant CV in the Victor-Purpura metric
is fixed, and needs to be chosen by the user. The proportionality constant
1/2st in SES is determined adaptively from the given point processes. In both
approaches, the minimum cost is computed by the Viterbi algorithm (Forney,
1973) (cf. Appendix A).

5.2 Van Rossum similarity measure

In the approach of (Van Rossum, 2001), the two point processes are converted
into continuous time series. In particular, each event of x is convolved with an
exponential function exp(t−xk/τR) (with t > xk), resulting in the time series
s(t). Likewise each event of x′ is convolved with this exponential function,
leading to the time series s′(t). From the time series s(t) and s′(t), the van
Rossum distance measure (Van Rossum, 2001) is computed as:

DR(σS) =
1

τR

∫

t
[s(t) − s′(t)]2 dt. (38)

Note that DR(σS) = 0 if and only if x and x′ are identical. The time scale of
this distance measure is determined by the time constant τR.

5.3 Schreiber et al. similarity measure

Also in the approach proposed in (Haas et al., 2002) and (Schreiber et al.,
2003), the two point processes x and x′ are first convolved with a filter, re-
sulting in time series s(t) and s′(t). The filter may for example be exponen-
tial (Haas et al., 2002) or Gaussian (Schreiber et al., 2003), and it has a certain
width τS. Next the pairwise correlation between the time series s(t) and s′(t)
is computed:

SS(σS) =

∫

t s(t)s
′(t) dt

√

∫

t s
2(t) dt

√

∫

t s
′2(t) dt

. (39)

In (Haas et al., 2002), one adjusts the phase lag between the time series,
whereas in (Schreiber et al., 2003), no phase lag is allowed. In this paper (as
in (Kreuz et al., 2007)), we will consider the approach of (Schreiber et al.,
2003). Note that the width τS of the filter defines the time scale of interaction
between the two point processes. We also wish to point out that if and only if
x and x′ are identical, we have SS = 1.

20

5.4 Hunter-Milton similarity measure

An alternative similarity measure was proposed in (Hunter et al., 2003). For
each event xk, one identifies the nearest event x′

k′(k) in the point process x′.
The degree of coincidence between those two events is determined as d(xk) =
exp(−|xk − x′

k′(k)|/τH). Along the same lines, one identifies for each x′

k′ the
nearest event xk(k′) in the point process x, and determines the degree of coin-
cidence d(x′

k′). The similarity SH between x and x′ is then computed as:

SH =
1
N

∑N
k=1 d(xk) + 1

N ′

∑N ′

k′=1 d(x′

k)

2
. (40)

The parameter τH sets the time scale for event coincidence. If x and x′ are
identical, we have SH = 1.

5.5 Event synchronization

Event synchronization (Quiroga et al., 2002) defines similarity in terms of
coincident events. Two events are considered to be coincident if their timing
offset is smaller than a maximum lag τQ. This lag can be fixed by the user, or
it can be extracted automatically from the point processes x and x′:

τQ(k, k′) = min(xk+1 − xk, xk − xk−1, x
′

k′+1 − x′

k′, x′

k′ − x′

k′
−1)/2. (41)

One computes the number of times an event appears in x shortly after an
event appears in x′ :

d(x|x′) =
N
∑

k=1

N ′

∑

k′=1

Jkk′, (42)

where

Jkk′ =



























1 if 0 < xk − x′

k′ ≤ τQ

1/2 if xk = x′

k′

0 else,

(43)

where τQ may be fixed or may be computed according to (41).

Similarly one can define d(x′|x), and eventually, event synchronization is de-
termined as:

SQ =
d(x|x′) + d(x′|x)√

NN ′

. (44)

If and only if all events in x and x′ are coincident, we have SQ = 1.

21

5.6 Discussion

5.6.1 Binning

Interestingly, the above mentioned classical approaches and SES do not dis-
cretize the time (or space) axis, in contrast to other methods, e.g., (Johnson
et al., 2001; Christen et al., 2006). The latter divide the time (space) axis in
bins, and then convert the point processes into binary sequences: if an event
occurred within a bin, then a one is associated with that bin, otherwise a zero.
A critical issue is the choice of bin width, since the results may depend on this
parameter. SES and the above mentioned classical measures avoid that issue,
since they do not rely on binning.

5.6.2 Time scale

Several of the above measures depend on a parameter that defines the time
scale of the interaction between the point processes, in particular, the Victor-
Purpura distance metric (Victor et al., 1997; Aronov, 2003; Kreuz et al., 2007;
Victor et al., 2007), the van Rossum similarity measure (Van Rossum, 2001),
the Schreiber et al. similarity measure (Schreiber et al., 2003), and the Hunter-
Milton similarity measure (Hunter et al., 2003). Event synchronization, how-
ever, adapts its time scale automatically, the user does not need to specify
it. The same holds for SES: the time scale is determined by the parameter
st, which is computed by the algorithm, and does not need to be specified a
priori. One just needs to choose initial values ŝ

(0)
t within the range of plausi-

ble values, the SES inference algorithm (cf. Table 2) then refines those initial
estimates and selects the most appropriate one.

In some applications, the user may prefer to use an automatic procedure to
determine the time scale; in other applications, one may wish to investigate
how the similarity depends on the time scale. For instance, the timescale may
be chosen based on optimizing some desired quantity, e.g., classification fidelity
(as in Victor et al. (1997)). In event synchronization, one can fix the time scale
instead of using the adaptive rule (41). Likewise, in SES one may fix st instead
of estimating it.

5.6.3 Delays

There might be a delay between the two point processes x and x′. Before the
above mentioned classical measures can be applied, one first needs to estimate
potential delays, and shift the point processes accordingly. On the other hand,
SES directly handles delays, and it does not require a separate procedure to
estimate delays. As a consequence, the estimates of st and ρ are robust against

22

lags between the point processes, as we will demonstrate in Section 6.

5.6.4 Matching

The van Rossum measure and Schreiber et al. measure allow for “matching”
between a single event in one train and multiple events in the other, since the
exponential kernel of an event in one train may overlap with the exponential
kernels of multiple events in the other train. Similarly in event synchroniza-
tion and the Hunter-Milton measure, an event may be matched with multiple
events. In SES and the Victor-Purpura metric on the other hand, each event
can be coincident with at most one other event.

23

6 Analysis of Surrogate Data

Here we investigate the robustness and reliability of SES and the classical
(dis)similarity measures reviewed in Section 5. In order to benchmark the
different measures, we apply them to surrogate data. For this data, the true
values of event reliability and timing jitter are known and directly controllable.
As far as we know, such comparison using surrogate data has not been carried
out yet. In the investigation of (Tiesinga et al., 2008), the measures were
applied to spike trains generated by a Hogdkin-Huxley type model; for such
models, the true values of event reliability and timing jitter are unknown.

We randomly generated 10,000 pairs of one-dimensional point processes (x,
x′) according to the symmetric procedure depicted in Fig. 1(b). For the sake
of definiteness, we assume that x and x′ are point processes in time. We con-
sidered several values of the parameters ℓ, pd, δt and st (σt). More specifically,
the length ℓ was chosen as ℓ = ℓ0/(1− pd), where ℓ0 ∈ N0 is a constant. With
this choice, the expected length of x and x′ is ℓ0, which is independent of pd.
We considered the values ℓ0 = 40 and 100, pd = 0, 0.1, . . . , 0.4, δt = 0ms,
25ms, 50ms, and σt = 10ms, 30ms, and 50ms. The parameter T0 was chosen
as ℓ0 · 100ms. The average spiking rate therefore is about 10Hz, for all choices
of ℓ0 and pd.

In the SES approach, we used the initial values δ̂
(0)
t = 0, 30, and 70 and ŝ

(0)
t =

(30ms)2. The parameter β was identical for all settings of ℓ, pd, δt and st, i.e.,
β = 0.02; it was optimized to yield the best overall results. There are perhaps
ways to determine β from a single pair of point processes, which would allow
us to determine β for each setting of ℓ, pd, δt and st separately; we leave this
issue as a topic for further research. In practice, however, one often considers
multiple point processes simultaneously. In Section 7 we determine the SES
parameters from multiple point process, and we will describe a method to
determine the “optimal” parameter β.

The constant CV of the Victor-Purpura metric was set to 0.001 and 0.1ms−1.
For the time constants τR, and τS, and τH (cf. Section 5), we considered the
values 10ms and 20ms. For the time constant τQ (cf. Section 5), we chose the
values 20ms and 40ms. Those values of the different time constants seemed to
yield the most reasonable results. Since we consider different lengths ℓ0, we
normalized the Victor-Purpura metric DV by the number of events in both
point processes, i.e., we consider the normalized metric D̄V defined as:

D̄V =
DV

n + n′
. (45)

In order to assess the (dis)similarity measures, we compute for each above

24

mentioned parameter setting and for each measure S the expectation E[S]
and normalized standard deviation σ[S] = σ[S]/E[S]. Those statistics are
computed by averaging over 10,000 pairs of point processes (x,x′), randomly
generated according to the symmetric procedure depicted in Fig. 1(b).

6.1 Results

Results for SES are summarized in Fig. 6. From this figure we can make the
following observations:

• The estimates of st and pd are biased, especially for small ℓ0, i.e., ℓ0 = 40,
and st ≥ (30ms)2 and pd > 0.2; more specifically, the expected value of
those estimates is smaller than the true value, which is due to ambiguity
inherent in event synchrony (cf. Fig. 2). On the other hand, the estimates
of δt are unbiased for all considered values of δt, st and pd (not shown here).

• The estimates of st do only weakly depend on pd, and vice versa.
• The estimates of st and pd do not depend on δt, i.e., they are robust to

lags δt, since the latter can be estimated reliably.
• The normalized standard deviation of the estimates of δt, st and pd grows

with st and pd, but it remains below 30% (not shown here). Those estimates
are therefore reliable.

• The expected value of st and pd does hardly depend on the length ℓ0. On
the other hand, the estimates of st and pd are less biased for larger ℓ0.
The normalized standard deviation of the SES parameters decreases as the
length ℓ0 increases (not shown here), as expected.

In other words, the SES algorithm results in reliable estimates of the SES
parameters st and ρ.

Results for the classical measures reviewed in Section 5 are summarized in Fig. 7
to Fig. 9. For the sake of clarity, we only show the results for δt = 0 in those
figures. The influence of lags on classical measures will be investigated later
in this section (see Fig. 9(a)). Let us first consider the results for the Victor-
Purpura distance metric (Victor et al., 1997; Aronov, 2003; Kreuz et al., 2007;
Victor et al., 2007), which are summarized in Fig. 6. From that figure we can
see the following:

• For CV = 0.001 ms−1, the distance metric D̄V grows with pd and is prac-
tically independent of st. (This is the “intermediate” regime mentioned in
Section 5.1.) In this regime, the metric D̄V is proportional to the number of
non-coincident events, and it behaves similarly as ρ; however, due to ambi-
guity inherent in event synchrony (cf. Fig. 2), for pd > 0.2, it overestimates
the number of coincident events and underestimates pd.

25

For larger CV , in particular CV = 0.1 ms−1, the metric clearly depends on
both pd and st. It is noteworthy that the value CV = 0.1 ms−1 depends on
T0/ℓ0 (average distance between events x and x′), which is 100 ms.
If CV = 0 ms−1 (not shown here), the metric D̄V is close to zero, since it is
equal to the difference in length of both point processes x and x′, and in our
experiments, both point processes have equal length on average. However,
note that the metric D̄V is not exactly equal to zero, since the length of
the sequences is not identical in every realization but only on average. The
difference in length fluctuates stronger as pd increases. Therefore, for CV = 0
ms−1, D̄V increases (weakly) with pd, independently of st, but remains close
to zero (D̄V < 0.1).
On the other hand, if CV ≫ 1 (not shown here), the metric D̄V is close
to one, independently of pd and st. In the transformation of one point pro-
cess into the other, (almost) every event is either deleted or inserted, and
therefore, a cost of 1 is associated to (almost) every event.

• The normalized standard deviation of D̄V decreases with pd and st, and
it remains below 30% (not shown here); the estimates of D̄V are therefore
reliable.

• The expected value of D̄V does not depend on the length ℓ0, however, its
normalized standard deviation decreases as the length ℓ0 increases (not
shown here).

The results for the van Rossum distance measure DR (Van Rossum, 2001) are
summarized in Fig. 8. From that figure one can see the following:

• The distance metric DR grows with both pd and st, similarly as the distance
metric D̄V (for CV ≫ 0.001).

• The normalized standard deviation of DR is largely independent of pd and
decreases with st (not shown here). Since it remains below 15%, the esti-
mates of DR are reliable.

• Similarly as the metric D̄V , the expected value of DR does not depend on
the length ℓ0, however, its normalized standard deviation decreases as the
length ℓ0 increases (not shown here).

• As the time constant τR increases, the expected value of DR and its normal-
ized standard deviation decrease (not shown here). This can be explained
as follows: the larger τR, the more the time series s(t) and s′(t) overlap, and
hence the smaller DR. Since there are generally also more coincident events
for larger DR, the fluctuations of DR are smaller, as a result, its normalized
standard deviation becomes smaller.

We made similar observations can for the Schreiber et al. measure SS (Schreiber
et al., 2003), the Hunter-Milton measure SH (Hunter et al., 2003), and event
synchronization SQ (both with fixed and adaptive time constant τQ(k, k′) (41)).

26

In order to assess the robustness of the SES algorithm, we also analyzed surro-
gate data generated by an alternative procedure; in the symmetric procedure
depicted in Fig. 1(b), the timing perturbations are not drawn from a Gaussian
distribution but from a Laplacian distribution instead:

p(x; m, w) =
1

2w
exp

(

−|x − m|
w

)

, (46)

where w is a scale parameter. The variance s of the Laplacian distribution is
given by s = 2w2, and hence the parameter w is related to the variance s as

w =
√

s/2.

More specifically, the generative process is as follows: First, one generates
an event string v of length ℓ, where the events vk are mutually independent
and uniformly distributed in [0, T0]. The strings z and z′ are generated by
delaying v over −δt/2 and δt/2 respectively and by (slightly) perturbing the
resulting event occurrence times. Those perturbations as zero-mean Laplacian

variables with variance st/2; the scale parameter w (cf. (46)) is chosen as

w =
√

st/4 = σt/2. Next some of the events in z and z′ are removed, resulting
in the sequences x and x′; each event of z and z′ is removed with probability
pd (“deletion”), independently of the other events.

We again considered the values ℓ0 = 40 and 100, pd = 0, 0.1, . . . , 0.4, δt =
0ms, 25ms, 50ms, and σt = 10ms, 30ms, and 50ms, and the parameter T0 was
again chosen as ℓ0 · 100ms.

The results are summarized in Fig. 10. By comparing Fig. 10 with Fig. 6, it
can be seen that the results for both generative processes are very similar. This
suggests that SES can robustly quantify timing precision and event reliability.

6.2 Discussion

From this study of surrogate data, we can conclude the following:

• SES and the classical measures considered in this paper are reliable in the
sense that their statistical fluctuations are relatively small; their normalized
standard deviation is typically below 30%, and often even below 20%.

• The longer the point process, the more reliable the measures become, as
expected.

• The classical measures are sensitive to lags, therefore, one needs to estimate
potential lags before they can be applied. As an illustration, Fig. 9(a) shows
how the Schreiber et al. measure SS depends on δt; clearly, SS drops as the
delay δt increases. On the other hand, SES directly incorporates lags, and as
a result, the estimates pd and st are robust to lags (cf. Fig. 6). However, it

27

is critical to choose an appropriate set of initial values δ̂
(0)
t . For example, if

one only uses δ̂
(0)
t = 0 as initial value, the estimates pd and st become more

sensitive to lags (not shown here). In other words, one of the initial values
should be sufficiently close to the true lag. Therefore, prior information
about potential lags is crucial for the success of the SES algorithm. If no
such prior information is available, one needs to choose multiple initial
values in a wide range; if the true lag falls within that range, the SES
algorithm will most likely yield reliable estimates of pd and st. On the other
hand, if the true lag is far from the initial values δ̂

(0)
t , the estimates of pd

and st may not be reliable.
• Most classical measures depend on both pd and st, and therefore, they are

not able to separate the two key aspects of synchrony, i.e., timing preci-
sion and event reliability. There is one exception: the distance metric D̄V

grows with pd for small cost factors CV , independently of st (cf. Fig. 7(a)
and Fig. 7(c)). The same holds for the SES parameter ρ (cf. Fig. 6(c) and
Fig. 6(d)); both D̄V and ρ are measures of event reliability. Note that ρ
is robust to lags δt, in contrast to D̄V . The SES parameter st is largely
independent of pd (cf. Fig. 6(a) and Fig. 6(b)), it is a robust measure for
timing dispersion. Interestingly, the parameters pd and st seem to quantify
event reliability and timing precision respectively, even if the data at hand
is generated from a model that differs from the SES model (cf. Fig. 1(b)).
We wish to point out once more, however, that all (dis)similarity measures
for one-dimensional point processes underestimate the timing dispersion
and the number of event deletions due to the ambiguity inherent in event
synchrony (cf. Fig. 2).

• There exists a classical procedure to estimate the timing dispersion based
on the Schreiber et al. measure SS (see, e.g., Tiesinga et al. (2008)). One
computes SS for a range of values of τS. The value of τS at which SS =
0.5 is considered as an estimate σS of the timing dispersion. Similarly one
may determine timing dispersion from other classical measures, e.g., the
Hunter-Milton similarity measure. It is important to realize, however, that
since the classical measures significantly depend on pd (with the exception
of the Victor-Purpura distance for sufficiently small CV), also the resulting
estimates of timing dispersion will significantly depend on pd. This is illus-
trated in Fig. 9(b). From the figure it can be seen that both the similarity
measure SS and the timing dispersion estimate σS significantly depends on
pd. For example, σS is equal to 12ms for the parameter settings (σt = 30ms,
pd = 0.4) and (σt = 50ms, pd = 0.1); in other words, σS is not a reliable
measure for timing dispersion, and the same holds for similar estimates of
timing dispersion, for example derived from the Hunter-Milton similarity
measure. In contrast, the estimate ŝt of the SES parameter st does not suffer
from those shortcomings (see Fig. 6(a) and Fig. 6(b)).

• SES is significantly more computationally complex than some classical sim-
ilarity measures, e.g., the Hunter-Milton similarity measure. In principle,

28

0 0.2 0.4
5

10

15

20

25

30

35

σ
t
 = 10

σ
t
 = 30

σ
t
 = 50

E
[σ̂

t]
[m

s]

pd

(a) ℓ0 = 40.

0 0.2 0.4
5

10

15

20

25

30

35

σ
t
 = 10

σ
t
 = 30

σ
t
 = 50

E
[σ̂

t
]
[m

s]

pd

(b) ℓ0 = 100.

0 0.2 0.4
0

0.1

0.2

0.3

0.4

σ
t
 = 10

σ
t
 = 30

σ
t
 = 50

E
[ρ̂

]

pd

(c) ℓ0 = 40.

0 0.2 0.4
0

0.1

0.2

0.3

0.4

σ
t
 = 10

σ
t
 = 30

σ
t
 = 50

E
[ρ̂

]
pd

(d) ℓ0 = 100.

Fig. 6. Results for stochastic event synchrony: the figure shows the expected value
E[σ̂t] and E[ρ̂] and the normalized standard deviation σ̄[σ̂t] and σ̄[ρ̂] for the pa-
rameter settings ℓ0 = 40 and 100, δt = 0, 25, 50ms, σt = 10, 30, 50ms, and
pd = 0, 0.1, . . . , 0.4. The curves for different δt are practically coinciding.

the complexity of the SES inference algorithm scales quadratically with the
sequence length. Without further modifications, the SES algorithm is only
practical for sequences of length 100 and less. However, a very reasonable
approach to limit the computationally complexity is to only consider pairs
of events that are sufficiently close to each other. For example, in the ap-
plication at hand, it is not likely that two events with a lag of more than
500ms form an event pair. Therefore, such pairs can be discarded a priori
in the SES algorithm. The complexity then becomes linear in the sequence
length, and the SES algorithm remains practical for sequences of length
1000 and more.

• The SES algorithm only leads to reliable estimates of pd and st if the pa-
rameter β is appropriately chosen. In the application at hand, β was fixed
for all parameter settings, and we choose the value of β that resulted in the
most reliable estimates. In the application of Section 7, we will propose a
technique to determine β from multiple given point processes.

29

0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

σ
t
 = 10

σ
t
 = 30

σ
t
 = 50

E
[D̄

V
]

pd

(a) cV = 0.001ms−1, ℓ0 =
40.

0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

σ
t
 = 10

σ
t
 = 30

σ
t
 = 50

E
[D̄

V
]

pd

(b) cV = 0.1ms−1, ℓ0 = 40.

0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

σ
t
 = 10

σ
t
 = 30

σ
t
 = 50

E
[D̄

V
]

pd

(c) CV = 0.001ms−1, ℓ0 =
100.

0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

σ
t
 = 10

σ
t
 = 30

σ
t
 = 50

E
[D̄

V
]

pd

(d) CV = 0.1ms−1, ℓ0 =
100.

Fig. 7. Results for (normalized) Victor-Purpura distance metric D̄V : the figure shows
the expected value E[D̄V] and the normalized standard deviation σ̄[D̄V] for the
parameter settings ℓ0 = 40 and 100, δt = 0ms σt = 10, 30, 50ms, pd = 0, 0.1, . . . , 0.4
and CV = 0.001, 0.1ms−1.

0 0.2 0.4
0.2

0.25

0.3

0.35

0.4

0.45

σ
t
 = 10

σ
t
 = 30

σ
t
 = 50

E
[D

R
]

pd

(a) τR = 10ms, ℓ0 = 40.

0 0.2 0.4
0.1

0.2

0.3

0.4

0.5

σ
t
 = 10

σ
t
 = 30

σ
t
 = 50

E
[D

R
]

pd

(b) τR = 20ms, ℓ0 = 40.

0 0.2 0.4
0.2

0.25

0.3

0.35

0.4

0.45

σ
t
 = 10

σ
t
 = 30

σ
t
 = 50

E
[D

R
]

pd

(c) τR = 10ms, ℓ0 = 100.

0 0.2 0.4
0.1

0.2

0.3

0.4

0.5

σ
t
 = 10

σ
t
 = 30

σ
t
 = 50

E
[D

R
]

pd

(d) τR = 20ms, ℓ0 = 100.

Fig. 8. Results for van Rossum distance metric DR: the figure shows the expected
value E[DR] and the normalized standard deviation σ̄[DR] for the parameter settings
ℓ0 = 40 and 100, δt = 0ms σt = 10, 30, 50ms, pd = 0, 0.1, . . . , 0.4 and τR= 10, 20ms.

30

5 10 15 20
0

0.2

0.4

0.6

0.8

1

σ
t
 = 10

σ
t
 = 30

σ
t
 = 50

τS [ms]

S
S

(a) SS as a function of τS for σt = 10, 30, 50ms and δt = 0, 25, 50ms.

5 10 15 20
0

0.2

0.4

0.6

0.8

1

σ
t
 = 10

σ
t
 = 30

σ
t
 = 50

S
S

τS [ms]
(b) SS as a function of τS for σt = 10, 30, 50ms and pd = 0, 0.1, . . . , 0.4.

Fig. 9. Sensitivity of the Schreiber et al. measure SS to δt and pd, with ℓ0 = 100
and σt = 10, 30, 50. In the top figure, the parameter settings are pd = 0.2 and
δt = 0, 25, 50ms; note that the similarity SS decreases with δt. In the bottom figure,
the parameter settings are pd = 0, 0.1, . . . , 0.4 and δt = 0ms.

31

0 0.2 0.4
5

10

15

20

25

30

35

σ
t
 = 10

σ
t
 = 30

σ
t
 = 50

E
[σ̂

t]
[m

s]

pd

(a) ℓ0 = 40.

0 0.2 0.4
5

10

15

20

25

30

35

σ
t
 = 10

σ
t
 = 30

σ
t
 = 50

E
[σ̂

t
]
[m

s]

pd

(b) ℓ0 = 100.

0 0.2 0.4
0

0.1

0.2

0.3

0.4

σ
t
 = 10

σ
t
 = 30

σ
t
 = 50

E
[ρ̂

]

pd

(c) ℓ0 = 40.

0 0.2 0.4
0

0.1

0.2

0.3

0.4

σ
t
 = 10

σ
t
 = 30

σ
t
 = 50

E
[ρ̂

]

pd

(d) ℓ0 = 100.

Fig. 10. Results for stochastic event synchrony for the surrogate data with Laplacian
timing perturbations: the figure shows the expected value E[σ̂t] and E[ρ̂] and the
normalized standard deviation σ̄[σ̂t] and σ̄[ρ̂] for the parameter settings ℓ0 = 40
and 100, δt = 0, 25, 50ms, σt = 10, 30, 50ms, and pd = 0, 0.1, . . . , 0.4. The curves for
different δt are practically coinciding.

32

7 Application: Firing Reliablity of a Neuron

In this section, we investigate an application related to neuroscience. In par-
ticular, we apply SES to quantify the firing reliability of neurons. We consider
the Morris-Lecar neuron model (Morris et al., 1981), which exhibits properties
of type I and II neurons (Gutkin et al., 1998; Tsumoto et al., 2007; Tateno
et al., 2004). The spiking behavior differs in both neuron types, as illustrated
in Fig. 12 and Fig. 13. In type II neurons, the timing jitter is small, but spikes
tend to drop out. In type I neurons, on the other hand, fewer spikes drop
out, but the dispersion of spike times is larger. In other words, type II neurons
prefer to stay coherent or to be silent, on the other hand, type I neurons follow
the middle course between those two extremes (Robinson, 2003).

This difference in spiking behavior is due to the way periodic firing is es-
tablished (Gutkin et al., 1998; Tsumoto et al., 2007; Tateno et al., 2004). In
type I neurons, periodic firing results from a saddle-node bifurcation of equi-
librium points. Such neurons show a continuous transition from zero frequency
to arbitrary low frequency of firing. Pyramidal cells are believed to be type I
neurons. On the other hand, in type II neurons, periodic firing occurs by a
sub-critical Hopf-bifurcation. Such neurons show an abrupt onset of repetitive
firing at a higher firing frequency, they cannot support regular low-frequency
firing. Squid giant axons and the Hodgkin-Huxley model are type II.

In the following section, we describe the Morris-Lecar neuron model in more
detail. In Section 7.2.1, we apply both SES and classical (dis)similarity to
quantify the firing reliability of both types of neurons, and will discuss how
the difference in spiking behavior is reflected in those (dis)similarity measures.

7.1 Morris-Lecar Neuron Model

The Morris-Lecar neuron model is described by (Morris et al., 1981):

CM

dV

dt
= −gL(V − VL) − gCaM∞(V − VCa) − gKN(V − VK) + Iext (47)

dN

dt
= λN(N∞ − N), (48)

where M∞, N∞, and λN are the following functions:

M∞ = 0.5
(

1 + tanh
(

(V − V1)/V2

)

)

(49)

N∞ = 0.5
(

1 + tanh
(

(V − V3)/V4

)

)

(50)

λN = φ cosh
(

(V − V3)/2V4

)

. (51)

33

1000 1200 1400 1600 1800 2000
40

50

60

70

80

90

100

110

t [ms]

I e
x
t

[n
A

]

Fig. 11. A realization of the input current Iext (52): it consists of a base line B, a
sinusoid with amplitude A and frequency f , and additive white Gaussian noise with
variance σ2

n.

Depending on the parameters of the system, the M-L neuron model behaves
as a type I or II neuron. Rinzel and Ermentrout (Gutkin et al., 1998) have
determined a setting of the system parameters for each type. Table 3 lists
parameter values that are different in the two classes, whereas Table 4 lists
common parameter values. The analysis of (Gutkin et al., 1998) was further re-
fined in (Tsumoto et al., 2007; Tateno et al., 2004), however, for our purposes,
the parameter setting of Table 3 and 4 suffices.

In our experiments the input current Iext is equal to:

Iext = A sin(2πft) + B + n(t), (52)

where n(t) is zero-mean white Gaussian noise with variance σ2
n. Fig. 11 shows

a realization of Iext. The sinusoidal component forces the neuron to spikes
regularly, however, the precise timing varies from trial to trial due to the noise
n(t). Our objective is to investigate how the noise affects the spike timing and
the tendency to drop spikes. We are especially interested in how the effect
of noise differs in both neuron types. The parameter settings for the input
current Iext are listed in Table 5. We have chosen the parameters such that
we obtain the typical spiking behavior of both types of neurons, as described
in (Robinson, 2003). Fig. 12 shows the membrane potential V (47) for 5 trials.
By thresholding V we obtain the raster plots of Fig. 13; we show 50 trials.

34

1000 1200 1400 1600 1800 2000
−60

−40

−20

0

20

40

60

t [ms]

V
[m

V
]

(a) Membrane potential V of type I neuron.

1000 1200 1400 1600 1800 2000
−60

−40

−20

0

20

40

60

t [ms]

V
[m

V
]

(b) Membrane potential V of type II neuron.

Fig. 12. Membrane potential V (47) for type I (top) and type II (bottom) neurons:
5 realizations are shown.

35

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

25

30

35

40

45

50

t [ms]

tr
ia

l

(a) Spike trains from type I neuron.

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

25

30

35

40

45

50

t [ms]

tr
ia

l

(b) Spike trains from type II neuron.

Fig. 13. Raster plots of spike trains from type I (top) and type II (bottom) neurons;
in each case 50 spike trains are shown.

36

Parameter type I type II

gCa [µS/cm2F] 4.0 4.4

φ [s−1] 1/15 1/25

V3 [mV] 12 2

V4 [mV] 17.4 30

Table 3
Parameter setting for type I and II Morris-Lecar neurons.

Parameter Value

CM 5 [µF/cm2]

gK 8 [µS/cm2]

gL 2 [µS/cm2]

VCa 120 [mV]

VK -80 [mV]

VL -60 [mV]

V1 -1.2 [mV]

V2 18 [mV]

Table 4
Fixed parameters for the Morris-Lecar neuron; this parameter setting is used in
both types of neurons.

Parameter type I type II

A [nA/cm2] 40 72

B [nA/cm2] 0.67 6

f [Hz] 10 10

σ [nA/cm2] 9 5

Table 5
Parameters of input current Iext (52) for type I and II Morris-Lecar neurons.

37

7.2 Results

We will first present the results for the SES approach (Section 7.2.1). In Sec-
tion 7.2.2 we discuss the results for classical methods.

7.2.1 Stochastic event synchrony

We computed the SES parameters for each pair of the 50 trials and for different
values of β. Next we averaged those parameters over all pairs; since there are
50 trials, we have 1225 such pairs in total. A similar approach was followed
in (Haas et al., 2002; Schreiber et al., 2003; Hunter et al., 2003). We set
δ̂(0) = 0, and in order to overcome local extrema, we use multiple initial values
ŝ
(0)
t = (1ms)2, (3ms)2, (5ms)2, (7ms)2 and (9ms)2. Each initialization of (δ̂(0),

ŝ
(0)
t) may lead to a different solution (ĵ, ĵ′, δ̂t, ŝt); we choose the most probable

solution, i.e., the one that has the largest value p(x, x′, ĵ, ĵ′, δ̂t, ŝt).

Note that instead of considering all 1225 pairs of trials, an arguably more
elegant approach would be to consider all 50 trials jointly. As we pointed out
earlier, SES can indeed be extended to collections of point processes, but this
goes beyond the scope of this paper (Part I) and the companion paper (Part
II).

Fig. 14(a) and Fig. 14(b) shows how the average st (σt) and ρ respectively
depend on β for both neuron types. Fig. 14(c) shows st (σt) as a function
of ρ for several values of β. The “optimal” values of (β, st, ρ) are indicated
by arrows. Later we will explain how we determined those values. From those
three figures it becomes immediately clear that the parameter ρ is significantly
smaller in type I than in type II neurons (for β ∈ [10−10, 10−2]), in contrast, st

is vastly larger. This agrees with our intuition: since in type II neurons spikes
tend to drop out, ρ should be larger. On the other hand, since the timing
dispersion of the spikes in type I is larger, we expect st to be larger in those
neurons.

Fig. 14(a) to Fig. 14(c) show the pair (st, ρ) for various values of β. Of course,
we eventually want to describe the firing reliability by one pair (st, ρ), but how
should we select β? If we choose β too small, some non-coincident events will
be treated as coincident events, i.e., they will be matched with other events,
resulting in large offsets. As a consequence, the distribution of the offsets will
have a significant number of outliers, which leads to an inconsistency: in model
p(x, x′, b, b′, δt, st, ℓ) (26), this distribution is supposed to be Gaussian, which
cannot capture the large number of outliers. In addition, due to those outliers,
the parameter st will be unreasonably large. As can be seen from Fig. 14(a),
this occurs for type II neurons when β < 10−10. Fig. 14(c) shows this threshold

38

10
−20

10
0

0

20

40

60

80

100

Type I
Type II

β

σ
t
[m

s]

(a) The parameter σt as a function of β.

10
−20

10
0

0

0.2

0.4

0.6

0.8

1

Type I
Type II

β

ρ

(b) The parameter ρ as a function of β.

0 0.5 1
0

20

40

60

80

Type I
Type II

ρ

σ
t
[m

s]

(c) The parameter σt as a function of ρ.

Fig. 14. The parameters σt and ρ estimated from spike trains of type I and type II
Morris-Lecar neurons (cf. Fig. 13): the top and middle figure show how σt and
ρ respectively depend on β. The bottom figure show how σt and ρ jointly evolve
with β. The arrows indicate the optimal settings (β, st, ρ) = (10−3, (15.2ms)2, 0.029)
and (β, st, ρ) = (0.03, (2.7ms)2, 0.27) for type I and type II neurons respectively.

39

phenomenon more clearly: there are two distinct regimes in the st-ρ curve. This
is most obvious for the type II neuron, but it also occurs in type I neuron:
the slope of its st-ρ curve is larger in the region ρ < 0.03 than in the region
ρ > 0.03.

On the other hand, if β too large, some coincident event pairs will no longer be
matched, those events will be treated as non-coincident events. As a result, the
distribution of the offsets will have lighter tails than the Gaussian distribution;
the parameter st will than be too small and ρ unreasonably large. This occurs
in both neuron types for β > 0.01 (cf. Fig. 14(a) and Fig. 14(b)).

From this intuitive reasoning, we expect there is an optimal value of β. This
is confirmed in Fig. 15 and Fig. 16: those figures show quantile-quantile plots
of the offset distribution for various values of β. If the offset distribution were
exactly Gaussian, the data quantiles would lie on the straight dashed lines.
One can clearly see deviations from the straight lines for small and large
values of β. Fig. 17 shows the average deviation from the straight line as a
function of β, which is a measure for how much the offset distribution differs
from a Gaussian distribution. The value of β with the smallest deviations is
10−3 and 0.03 for type I and type II neurons respectively, which corresponds
to (st, ρ) = ((15.2ms)2, 0.029) and (st, ρ) = ((2.7ms)2, 0.27) respectively. For
those values of β, the data quantiles practically coincide with the straight line,
and therefore, the offset distribution may be considered Gaussian and model
p(x, x′, b, b′, δt, st, ℓ) (26) is then self-consistent.

We also applied this technique for determining β to single pairs of point pro-
cesses (cf. Section 6) but did not obtain satisfactory results. The method needs
a sufficient number of (coincident) events in order to be reliable. Therefore,
we decided to fix the parameter β in the experiments of Section 6, and to
optimize over it.

We assessed the estimates of (st, ρ) by bootstrapping (Efron et al., 1993). More
precisely, for both types of neurons we generated 1,000 sets of 50 spike trains.
Those sets of spike trains were generated along the lines of the symmetic
procedure of Fig. 1(b): first we generate a hidden process v with length ℓ =
40/(1 − pd) and equidistant events vk; then we generate 50 noisy copies of v,
by slightly perturbing the timing of the events vk (with noise variance st/2)
and deleting some of the events (with probability pd). The delay δt was set
equal to zero. We carried out this procedure for type I neurons with (st, ρ) =
((15.2ms)2, 0.029) and type II neurons with (st, ρ) = ((2.7ms)2, 0.27), which
are the estimates obtained by the SES inference procedure, as discussed in
the above. Next we applied the SES algorithm of Table 2 to those sets of
point processes; the parameter β was set equal to 10−3 and 0.03 for type I and
type II neurons respectively, and we chose the initial values δ

(0)
t = 0ms and

s
(0)
t = 30(ms)2. The results of this analysis are summarized in Table 6. Since

40

Statistics type I type II

E[st] 15.3 2.70

σ̄[st] 1.8% 1.8%

E[ρ] 0.0283 0.273

σ̄[ρ] 12% 3.1%

Table 6
Results from the bootstrapping analysis of the SES estimates (st, ρ) = ((15.2ms)2,
0.029) and (st, ρ) = ((2.7ms)2, 0.27) for type I and type II neurons respectively. The
table shows the expected values E[st] and E[ρ], besides the normalized standard
deviations σ̄[st] and σ̄[ρ]. The expected values practically coincide with the actual
estimates and the normalized standard deviations are small; therefore, the SES
estimates (st, ρ) may be considered reliable.

the expected values of st and ρ agree very well with the true values, and the
normalized standard deviations are small (<15%), it is reasonable to believe
that the estimates (st, ρ) = ((15.2ms)2, 0.029) and (st, ρ) = ((2.7ms)2, 0.27)
for type I and type II neurons respectively are accurate.

For completeness, we show in Fig. 18 a histogram of the number of iterations
required for the SES algorithm of Table 2 to converge. In each of those itera-
tions, one updates the sequences (j, j′) and the SES parameters (cf. Table 2).
The histogram of Fig. 18 was computed over all pairs of trials of both types of
neurons and for all values of β considered in Fig. 14(a). From the histogram,
we can see that the algorithm converged after at most 19 iterations, and on
the average, after about three iterations. We allowed a maximum number of
30 iterations, and therefore, from Fig. 18 we can conclude that the algorithm
always converged in our experiments.

41

−5 0 5
−1000

−500

0

500

1000

Standard normal quantiles

D
at

a
q
u
an

ti
le

s

(a) (β, σt, ρ) =
(10−2, 14.4ms, 0.046)

−5 0 5
−1000

−500

0

500

1000

Standard normal quantiles
D

at
a

q
u
an

ti
le

s
(b) (β, σt, ρ) =
(10−3, 15.2ms, 0.029)

−5 0 5
−1000

−500

0

500

1000

Standard normal quantiles

D
at

a
q
u
an

ti
le

s

(c) (β, σt, ρ) =
(10−4, 15.3ms, 0.028)

−5 0 5
−1000

−500

0

500

1000

Standard normal quantiles

D
at

a
q
u
an

ti
le

s

(d) (β, σt, ρ) =
(10−5, 15.4ms, 0.028)

Fig. 15. Quantile-quantile plots for the offset between coincident spikes the type I
neuron. If the (solid) quantile-quantile curve coincides with the (dotted) straight
line, the distribution of the offset of coincident events is Gaussian. The deviation
between both curves is the smallest at (β, st, ρ) = (10−3, (15.2ms)2, 0.029), they
then practically coincide.

42

−5 0 5
−150

−100

−50

0

50

100

150

Standard normal quantiles

D
at

a
q
u
an

ti
le

s

(a) (β, σt, ρ) =
(0.04, 2.3ms, 0.32)

−5 0 5
−150

−100

−50

0

50

100

150

Standard normal quantiles
D

at
a

q
u
an

ti
le

s
(b) (β, σt, ρ) =
(0.03, 2.7ms, 0.27)

−5 0 5
−150

−100

−50

0

50

100

150

Standard normal quantiles

D
at

a
q
u
an

ti
le

s

(c) (β, σt, ρ) =
(0.02, 3.2ms, 0.23)

−5 0 5
−150

−100

−50

0

50

100

150

Standard normal quantiles

D
at

a
q
u
an

ti
le

s

(d) (β, σt, ρ) =
(0.01, 3.7ms, 0.19)

Fig. 16. Quantile-quantile plots for the offset between coincident spikes of the type II
neuron. If the (solid) quantile-quantile curve coincides with the (dotted) straight
line, the distribution of the offset of coincident events is Gaussian. The deviation
between both curves is the smallest at (β, st, ρ) = (0.03, (2.7ms)2, 0.27), they then
practically coincide.

43

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

β

N
on

-G
au

ss
ia

n
it
y

(a) Non-Gaussianity of the offset between coincident events
in type I neurons.

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

β

N
on

-G
au

ss
ia

n
it
y

(b) Non-Gaussianity of the offset between coincident events
in type II neurons.

Fig. 17. Non-Gaussianity of the offset between coincident events; this is the deviation
of the offset distribution from a Gaussian distribution. This quantity is computed as
the average distance between the quantile-quantile curve and the straight line shown
in the quantile-quantile plots of Fig. 15 and Fig. 16. The minimum non-Gaussianity
is reached when the distance between both curves is the smallest; this occurs at β
= 10−3 and β = 0.03 in type I and type II neurons respectively.

44

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

number of iterations

fr
eq

u
en

cy

Fig. 18. Histogram of the number of iterations required for convergence of the SES
inference algorithm of Table 2; in each of those iterations, the sequences (j, j′) and
the SES parameters are updated (cf. Table 2). The histogram is computed over all
pairs of spike trains of both types of neurons (cf. Fig. 13) and for all values of β
considered in Fig. 14(a). The maximum number of iterations was set to 30. It can
be seen from this histogram that the algorithm converged in all experiments.

45

7.2.2 Classical measures

Besides SES, we also applied the classical methods reviewed in Section 5. The
results are summarized in Fig. 19.

From those figures, it can be seen that the similarity measures SS, SH and
SQ are larger for type II neurons than for type I neurons if the time constants
τS, τH and τQ are small; for large time constants, the opposite holds. This
can be explained as follows. Since the timing dispersion in type I neurons is
fairly large, many spikes of type I neurons will be treated as non-coincident
(non-overlapping) if the time constants τS, τH and τQ are small. On the other
hand, if those time constants are large, most spikes of type I neurons will
be considered as coincident (overlapping). In contrast, type II neurons have
high timing precision, and therefore, the similarity measures SS, SH and SQ

grow quickly with the time constants τS, τH and τQ. However, the measures
converge to relatively small values: due to the large number of drop-outs in
spike trains of type II neurons, a substantial amount of spikes are treated as
non-coincident; therefore, as the time constants grow, the similarity measures
SS, SH and SQ attain smaller values than in type I neurons.

The results of the (normalized) Victor-Purpura distance metric D̄V and the
van Rossum distance metric DR can be understood along the same lines.

As we pointed out earlier, SES adjusts its time scale automatically. The same
holds for event synchronization Quiroga et al. (2002): one may adapt the time
constant τQ according to (41). With this adaption rule for τQ, we obtained
SQ = 0.96 for type I neurons and SQ = 0.83 for type II neurons. This can be
understood as follows: since the adaptive time constant τQ is typically about
50ms or larger, the value of SQ is the lowest in type II neurons due to the
frequent drop-outs in their spike trains.

At last, we consider a classical similarity measure SISI for multiple point pro-
cesses, introduced in (Tiesinga et al., 2004) (see also (Tiesinga et al., 2008)); it
is based on inter-spike intervals (ISI). As a first step one merges the spike times
across all trials. Next the inter-spike intervals of this sequence are calculated
and the coefficient of variation of the aggregated response (CVP) is calculated
as the standard deviation of the interspike-intervals divided by their mean.
The similarity measure SISI is then eventually obtained by subtracting 1 from
the CVP and dividing by the square root of the number of trials. We obtained
SISI = 0.25 and SISI = 0.64 for type I and type II neurons respectively. Since
SISI captures mostly the timing precision and is less sensitive to drop-outs, we
indeed expect that it attains a larger value for type II neurons than for type I
neurons.

46

10
−2

10
0

10
2

10
4

10
6

0.2

0.4

0.6

0.8

type I
type II

τV [ms]

D̄
V

(a) Victor-Purpura measure D̄V

0 20 40 60 80 100
5

10

15

20

25

30

35

type I
type II

τR [ms−1]

D
R

(b) van Rossum measure DR

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

type I
type II

τS [ms]

S
S

(c) Schreiber et al. measure SS

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

type I
type II

τH [ms]

S
H

(d) Hunter-Milton measure SH

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

type I
type II

τQ [ms]

S
Q

(e) Event synchronization SQ

Fig. 19. Classical (dis)similarity measures applied to the spike trains of type I and
type II Morris-Lecar neurons (cf. Fig. 13). The figures show the (normalized) Vic-
tor-Purpura distance metric D̄V , the van Rossum distance metric DR, the Schreiber
et al. similarity measure SS , the Hunter-Milton similarity measure SH , and the
event synchronization measure SQ as a function of their (inverse) time constants
τV = 1/CV , τR, τS, τH , and τQ respectively. For small values of those constants, the
measures indicate that type II neurons fire more synchronously than type I neurons;
for larger values of the time constants, the opposite holds.

47

7.3 Discussion

This analysis underlines an important issue: most classical measures depend
on a time constant, and in some practical situations, it is not obvious how to
choose the “optimal” value of those time constants. Indeed, Fig. 19 suggests
that one should compute the measures for a range of values of the time con-
stants. As a result, one obtains not just one single measure of similarity, but
a similarity function S(τ). Such function may not always be easy to interpet,
compare, or manipulate in practice. Event synchronization and SES are able
to automatically determine the appropriate time scale.

However, as we pointed out earlier, in some applications, one may wish to
investigate how the similarity depends on the time scale. In event synchro-
nization and SES, the time scale can be fixed, therefore, event synchronization
and SES can be computed for a range of time scales.

48

8 Conclusions

We have presented an alternative method to quantify the similarity of two
time series, referred to as stochastic event synchrony (SES). As a first step,
one extracts events from both time series, resulting in two point processes. The
events in those point processes are then aligned. The better the alignment, the
more similar the original time series are considered to be. In this paper (Part I),
we focussed on one-dimensional point processes.

Obviously, it is important to extract meaningful events from the given time
series. The proposed method may only be expected to produce useful results
if the events characterize the time series in a suitable manner. In the case of
spike trains, individual spikes can naturally be considered as events. Note that
for certain neurons, however, it may actually be more appropriate to define a
burst of spikes as a single event.

We compared SES to classical (dis)similarity measures for one-dimensional
point processes. Through the analysis of surrogate data, we observed that most
classical (dis)similarity measures are not able to distinguish timing dispersion
from event reliability, i.e., they depend on both quantities. In contrast, SES
allows to quantify both aspects of synchrony separately. We also wish to reit-
erate that all (dis)similarity measures, both the classical measures and SES,
typically underestimate the timing dispersion and overestimates event relia-
bility; this is due to the ambiguous nature of the synchrony of one-dimensional
point processes.

This ambiguity may be resolved by incorporating additional information about
the events. For example, in the case of spikes, one may take the shape of the
spikes into account. The point processes then become multi-dimensional. In
our companion paper (Part II), we will describe how SES may be extended
to multi-dimensional point processes. In that setting, the events pairs are no
longer assumed to be ordered, in contrast to the present formulation of SES
(see Section 3).

At last, we would like to address an interesting topic for future reseach. The
SES parameters are determined by coordinate descent, which is guaranteed
to converge to stationary points of the posterior distribution of the SES pa-
rameters. However, it does not necessarily converge to the maximum of that
distribution, which corresponds to the maximum a posteriori (MAP) estimates
of the SES parameters. Instead of trying to obtain the MAP estimates (by co-
ordinate descent or other techniques), one may (approximately) compute the
posterior distribution of the SES parameters by means of Monte-Carlo algo-
rithms such as Gibbs sampling or Markov-chain Monte Carlo methods. From
that (approximate) posterior distribution, one may be able to obtain more

49

reliable estimates of the SES parameters. In addition, whereas the proposed
approach is mostly practical when the prior for the number of events is a ge-
ometric distribution, Monte Carlo methods can easily deal with other priors
such as Poisson distributions. However, such Monte-Carlo approaches would
be substantially slower than the proposed algorithm based on coordinate de-
scent.

50

Acknowledgments

Results of this paper were in part reported in (Dauwels et al., 2007). The
authors wish to thank Zhe (Sage) Chen (Harvard University), Kenji Morita
(RIKEN Brain Science Institute), Yuichi Sakumura (NAIST), Carlos Ro-
driguez (University at Albany), Sujay Sanghavi (MIT), and Yuki Tsukada
(NAIST) for helpful discussions. They are grateful to participants of the Re-
treat of the MIT Picower Center for Learning and Memory (May 2007, Cape
Cod, MA, US), the RIKEN Symposium “Brain Activity and Information Inte-
gration” (September 2007, RIKEN, Saitama, Japan), and the NIPS Workshop
“Large-Scale Brain Dynamics” (December 2007, Whistler, Canada) for numer-
ous inspiring questions and comments. J.D. is deeply indebted to Shun-ichi
Amari (RIKEN Brain Science Institute) and Andi Loeliger (ETH Zurich) for
continuing support and encouragement over the last years.

51

A Derivation of Inference Algorithm for One-Dimensional SES

Here we derive the algorithm of Table 2, more specifically, we clarify how to
carry out the updates (36) and (37).

We start with the update (37) since it is the most straightforward. The es-

timate δ̂
(i+1)
t is the average offset between the coincident events at iteration

i + 1:

δ̂
(i+1)
t

△

=
1

n(i+1)

n(i+1)
∑

k=1

(

x̂
′(i+1)
k − x̂

(i+1)
k

)

, (A.1)

where x̂
(i+1)
k

△

= x
ĵ
(i+1)
k

is the ĵ
(i+1)
k -th event of x, and ĵ(i+1) is the estimate of

j at iteration i + 1. Likewise x̂
′(i+1)
k

△

= x′

ĵ
′(i+1)
k

is the ĵ
′(i+1)
k -th event of x′, and

n(i+1) is the number of coincident pairs at iteration i + 1:

n(i+1) = n −
n
∑

k=1

b̂
(i+1)
k = n′ −

n
∑

k=1

b̂
′(i+1)
k . (A.2)

Similarly, the estimate is the variance ŝ
(i+1)
t of the offset between the coincident

events at iteration i + 1:

ŝ
(i+1)
t

△

=
1

n(i+1)

n(i+1)
∑

k=1

(

x̂
′(i+1)
k − x̂

(i+1)
k − δ̂

(i+1)
t

)2
. (A.3)

The update (36) can readily be carried out by applying the Viterbi algo-
rithm (Forney, 1973) (“dynamic programming”) on a trellis with the pairs of
coincident events (xjk

, x′

j′
k

) as states, or equivalently, by applying the max-

product algorithm on a cycle-free factor graph (Loeliger, 2004; Loeliger et al.,
2007) of p(x, x′, j, j′, δt, st). The procedure is equivalent to dynamic time warp-
ing (Myers et al., 1981); it is for example used in the context of bio-informatics
to compute the distance between genetic sequences (Sellers, 1974, 1979). It is
also applied in neuroscience to compute various spike metrics (Victor et al.,
1997; Aronov, 2003; Kreuz et al., 2007; Victor et al., 2007).

As a first step in that procedure, one arranges the sequences x and x′ on the
sides of a (n+1)×(n′+1) grid (see Fig. 5). Note that we assume, without loss
of generality, that the sequences x and x′ are ordered, i.e., xk ≥ xk−1 and x′

k ≥
x′

k−1. An alignment (ĵ, ĵ′) corresponds to a path P = {(xq1, x
′

q′1
), (xq2, x

′

q′2
), . . . }

on the grid, in particular, the alignment (36) corresponds to the minimal-cost
path. Note that each path starts at (0,0) and ends at (n, n′). In addition, it
never turns back, in other words, the indices qk and q′k′ never decrease, since
the event sequences are assumed to be ordered (cf. Section 3). Moreover, those

52

indices increase by at most 1 at each step along the path. As a result, each
path contains three kinds of segments [(qk−1, q

′

k′
−1), (qk, q

′

k′)], all of length 1:

(1) horizontal: (qk, q
′

k′) = (qk−1 + 1, q′k′
−1)

(2) vertical: (qk, q
′

k′) = (qk−1, q
′

k′
−1 + 1)

(3) diagonal: (qk, q
′

k′) = (qk−1 + 1, q′k′
−1 + 1).

The minimal-cost path is found by computing an (n+1)× (n′+1) cost matrix
M . The first row and column of M are filled with zeroes, i.e., the elements
Mk,0 = 0 = M0,k′ (for k = 0, 1, . . . , n and k′ = 0, 1, . . . , n′), the other elements
are computed recursively as:

Mk,k′ = min
[

Mk−1,k′ + d
(

ŝ
(i)
t

)

, Mk,k′
−1 + d

(

ŝ
(i)
t

)

,

Mk−1,k′
−1 + d

(

xk, x
′

k′; δ̂
(i)
t , ŝ

(i)
t

)

]

, (A.4)

for k = 1, . . . , n and k′ = 1, . . . , n′. Obviously, in order to compute the cost
Mk,k′, the costs Mk−1,k′, Mk,k′

−1, and Mk−1,k′
−1 need to have been computed

previously. To this end, one may first compute M1,1, then one may gradually
fill the rest of the matrix M . The minimal cost is eventually given by Mnn′ , the
corresponding path P and alignment (ĵ, ĵ′) may be traced back from the op-
tions chosen at each stage in the recursion (A.4). The first choice corresponds
to treating xk as a non-coincident event (b̂k = 1; horizontal segment), the
second choice corresponds to treating x′

k′ as a non-coincident event (b̂′k′ = 1;
vertical segment), and the third choice corresponds to treating (xk, x

′

k′) as
an event pair (b̂k = 0 and b̂′k′ = 0; diagonal segment). Combining the up-
dates (A.1) and (A.3) with the recursion (A.4) leads to the algorithm of Ta-
ble 2.

Note that if the event sequences are not assumed to be ordered, the paths on
the grid may return and the minimal-cost path may no longer be found by
the above simple dynamic programming procedure.

53

References

Abeles M., Bergman H., Margalit E., and Vaadia E., 1993. Spatiotemporal
firing patterns in the frontal cortex of behaving monkeys. J. Neurophysiol
70(4), 1629–1638.

Amari S., Nakahara H., Wu S., and Sakai Y., 2003. Synchronous firing and
higher-order interactions in neuron pool. Neural Computation 15, 127–142.

Aronov D., 2003. Fast algorithm for the metric-space analysis of simultaneous
responses of multiple single neurons. J. Neuroscience Methods 124, 175–179.

Bezdek J. and Hathaway R., 2002. Some notes on alternating optimization.
Proc. AFSS Int. Conference on Fuzzy Systems.

Bezdek J., Hathaway R., Howard R., Wilson C., and Windham M., 1987. Local
convergence analysis of a grouped variable version of coordinate descent.
Journal of Optimization Theory and Applications 54(3).

Buzsáki G., 2006. Rhythms of the brain. Oxford University Press.
Christen M., Kohn A., Ott T., and Stoop R., 2006. Measuring spike pattern

reliability with the Lempel-Ziv distance. J. Neuroscience Methods 156, 342–
350.

Crick F. and Koch C., 2003. A framework for consciousness. Nat Neurosci.
6(2):119–26.

Dauwels J., Vialatte F., Rutkowski T., and Cichocki A., 2007. Measuring
neural synchrony by message passing, Advances in Neural Information Pro-
cessing Systems 20 (NIPS 20), in press.

Dauwels J., Tsukada Y., Sakumura Y., Ishii S., Aoki K., Nakamura T., Mat-
suda M., Vialatte F., and Cichocki A., 2008. On the synchrony of morpho-
logical and molecular signaling events in cell migration. Lecture Notes on
Computer Science, submitted.

Efron, B. and Tibshirani, R., 1993. An Introduction to the Bootstrap, Chapman
& Hall/CRC.

Eichhorn J., Tolias A., Zien A., Kuss M., Rasmussen C., Weston J., Logo-
thetis N., and Schoelkopf B., 2004. Prediction on spike data using kernel
algorithms. Advances in Neural Information Processing Systems 16 (NIPS
16), MIT Press.

Forney G. D., 1973. The Viterbi algorithm. Proceedings of the IEEE 61(3),
268-278.

Gallager R., 1996. Discrete Stochastic Processes, The International Series in
Engineering and Computer Science.

Gutkin B. S. and Ermentrout G. B., 1998. Dynamics of membrane excitabil-
ity determine interspike interval variability: a link between spike genera-
tion mechanisms and cortical spike train statistics. Neural Computation 10,
1047–1065.

Haas J.S. and White J.A., 2002. Frequency selectivity of layer II stellate cells
in the medial entorhinal cortex. J. Neurophysiology 88, 2422–29.

Hunter J.D. and Milton G., 2003. Amplitude and frequency dependence of
spike timing: implications for dynamic regulation. J. Neurophysiology 90,

54

387–94.
Jeong J., 2004. EEG dynamics in patients with Alzheimer’s disease. Clinical

Neurophysiology 115, 1490–1505.
Johnson D.H., Gruner C.M., Baggerly K., and Seshagiri C., 2001. Information-

theoretic analysis of neural coding. J. Comp. Neuroscience 10, 47–69.
Jordan M. I. (ed.), 1999. Learning in Graphical Models, MIT Press.
Kreuz T., Haasb J. S., Morellic A., Abarbanel H. D. I., and Politia A., 2007.

Measuring spike train synchrony. Journal of Neuroscience Methods 165(1),
151–161.

Loeliger H.-A., 2004. An introduction to factor graphs. IEEE Signal Processing
Magazine, 28–41.

Loeliger H.-A., Dauwels J., Hu J., Korl S., Li Ping, and Kschischang F., 2007.
The factor graph approach to model-based signal processing. Proceedings
of the IEEE 95(6), 1295–1322.

Matsuda H., 2001. Cerebral blood flow and metabolic abnormalities in
Alzheimer’s disease. Ann. Nucl. Med. 15, 85–92.

Morris C. and Lecar H., 1981. Voltage oscillations in the barnacle giant muscle
fiber. Biophys. J. 35, 193–213.

Myers C. S. and Rabiner L. R., 1981. A comparative study of several dynamic
time-warping algorithms for connected word recognition. The Bell System
Technical Journal 60(7), 1389–1409.

Pereda E., Quiroga R. Q., and Bhattacharya J., 2005. Nonlinear multivariate
analysis of neurophsyiological signals. Progress in Neurobiology 77, 1–37.

Quiroga R. Q., Kraskov A., Kreuz T., and Grassberger P., 2002. Performance
of different synchronization measures in real data: a case study on EEG
signals. Physical Review E 65.

Quiroga R. Q., Kreuz T., and Grassberger P., 2002. Event synchronization: a
simple and fast method to measure synchronicity and time delay patterns.
Physical Review E 66.

Robinson H. P. C., 2003. The biophysical basis of firing variability in cortical
neurons, Chapter 6 in Computational Neuroscience: A Comprehensive Ap-

proach, Mathematical Biology & Medicine Series, Edited By Jianfeng Feng,
Chapman & Hall/CRC.

Schrauwen B. and Van Campenhout J., 2007. Linking non-binned spike train
kernels to several existing spike train metrics. Neurocomputing 70(7-9),
1247–1253.

Schreiber S., Fellous J.M., Whitmer J.H., Tiesinga P.H.E., and Sejnowski T.J.,
2003. A new correlation-based measure of spike timing reliability. Neuro-
computing 52, 925–931.

Sellers P. H., 1974. On the theory and computation of evolutionary distances.
SIAM J. Appl. Math. 26, 787–793.

Sellers P. H., 1979. Combinatorial Complexes, D. Reidel Pub. Co.
Shpigelman L., Singer Y., Paz R., and Vaadia E., 2005. Spikernels: predict-

ing arm movements by embedding population spike rate patterns in inner-
product spaces. Neural Computation 17(3), 671–690, 2005.

55

Singer W., 2001. Consciousness and the binding problem, 2001. Annals of the
New York Academy of Sciences 929, 123–146.

Stam C. J., 2005. Nonlinear dynamical analysis of EEG and MEG: review of
an emerging field. Clinical Neurophysiology 116, 2266–2301.

Tateno T. and Pakdaman K., 2004. Random dynamics of the Morris-Lecar
neural model. Chaos 14(3).

Tiesinga P. and Sejnowski T. J., 2004. Rapid temporal modulation of syn-
chrony by competition in cortical interneuron networks. Neural Computa-
tion 16, 251–275.

Tiesinga P., Fellous J.-M., and Sejnowski T. J., 2008. Regulation of spike
timing in visual cortical circuits. Nature Reviews Neuroscience 9, 97–107.

Tsumoto K., Kitajima H., Yoshinaga T., Aihara K., and Kawakami H., 2006.
Bifurcations in Morris-Lecar neuron model. Neurocomputing 69, 293–316.

van Rossum M.C.W., 2001. A novel spike distance. Neural Computation 13,
751–63.

Varela F., Lachaux J. P., Rodriguez E., and Martinerie J., 2001. The brainweb:
phase synchronization and large-scale integration. Nature Reviews Neuro-
science 2(4), 229–39.

Victor J. D. and Purpura K. P., 1997. Metric-space analysis of spike trains: the-
ory, algorithms, and application. Network: Comput. Neural Systems 8(17),
127–164.

Victor J. D., Goldberg D., and Gardner D., 2007. Dynamic programming
algorithms for comparing multineuronal spike trains via cost-based metrics
and alignments. J. Neurosci. Meth. 161, 351–360.

von der Malsburg C., 1981. The correlation theory of brain function. Internal
report 81-2, MPI biophysical chemistry. Reprinted in E. Domany, J. L. van
Hemmen, & K. Schulten (Eds.), Models of neural networks II, chap. 2 (pp.
95–119). Berlin: Springer, 1994.

Zolotarev V.M., 1986. One-dimensional Stable Distributions. Translations of
Mathematical Monographs, vol. 65, American Mathematical Society, Prov-
idence.

56

