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Abstract

Stochastic event synchrony is a technique to quantify the similarity of pairs of
signals. First, “events” are extracted from the two given time series. Next, one tries
to align events from one time series with events from the other. The better the
alignment, the more similar the two time series are considered to be. In Part I, one-
dimensional events are considered, this paper (Paper II) concerns multi-dimensional
events. Although the basic idea is similar, the extension to multi-dimensional point
processes involves a significantly harder combinatorial problem, and therefore, it is
non-trivial.

Also in the multi-dimensional, the problem of jointly computing the pairwise
alignment and SES parameters is cast as a statistical inference problem. This prob-
lem is solved by coordinate descent, more specifically, by alternating the following
two steps: (i) one estimates the SES parameters from a given pairwise alignment;
(ii) with the resulting estimates, one refines the pairwise alignment. The SES pa-
rameters are computed by maximum a posteriori (MAP) estimation (Step 1), in
analogy to the one-dimensional case. The pairwise alignment (Step 2) can no longer
be obtained through dynamic programming, since the state space becomes too large.
Instead it is determined by applying the max-product algorithm on a cyclic graph-
ical model.

The method is first applied to surrogate data in order to test its robustness and
reliability. Next it is applied to detect anomalies in EEG synchrony of Mild Cognitive
Impairment (MCI) patients. Numerical results suggest that SES is significantly
more sensitive to perturbations in EEG synchrony than a large variety of classical
synchrony measures.
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1 Introduction

In the last years, the problem of detecting correlations between neural sig-
nals has attracted quite some attention in the neuroscience community. Sev-
eral studies have related neural synchrony to attention and cognition (e.g.,
(Buzsáki, 2006)); recently, it has been demonstrated that patterns of neural
synchronization flexibly trigger patterns of neural interactions (Womelsdorf
et al., 2007). Moreover, it is has frequently been reported that abnormalities
in neural synchrony lie at the heart of a variety of brain disorders such as
Alzheimer’s and Parkinson’s disease (e.g., (Matsuda et al., 2001; Jeong, 2004;
Uhlhaas et al., 2006)). In response to those findings, quite some efforts have
been made to develop novel quantitative methods to detect statistical depen-
dencies in brain signals (see, e.g., (Stam, 2005; Quiroga et al., 2002; Pereda et
al., 2005)).

In this paper, we extend stochastic event synchrony (SES) from one-dimensional
point processes (Part I) to multi-dimensional processes (Part II). The under-
lying principle is identical, but the inference algorithm to compute the SES
parameters is fundamentally different. The basic idea is again the following:
First, we extract “events” from the two given time series. Next, we try to
align events from one time series with events from the other. The better the
alignment, the more similar the two time series are considered to be. More
precisely, the similarity is quantified by the following parameters: time delay,
variance of the timing jitter, fraction of “non-coincident” events, and average
similarity of the aligned events. In this paper, we mostly focus on point pro-
cesses in time-frequency domain. The average event similarity is in that case
described by two parameters: the average frequency offset between events in
the time-frequency plane and the variance of the frequency offset (“frequency
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jitter”). SES then consists of five parameters in total. Those parameters quan-
tify the synchrony of oscillatory events, and provide an alternative to classical
synchrony measures that quantify amplitude or phase synchrony.

The pairwise alignment of point processes is again cast as a statistical inference
problem. However, inference in that model cannot be carried out by dynamic
programming, since the state space is too large. Instead we apply the max-
product algorithm on a cyclic graphical model (Jordan, 1999; Loeliger, 2004;
Loeliger et al., 2007); the inference method is now an iterative algorithm.
Based on a result in (Bayati et al., 2005) (generalized in (Sanghavi, 2007a,b)),
we will show that this algorithm yields the optimal alignment as long as the
optimal alignment is unique.

In this paper, we only consider pairs of point processes, but the methods may
be extended to multiple point processes. That extension, however, is non-
trivial and goes beyond the scope of this paper; it will be described in a future
report.

As in the one-dimensional case, the method may be applied to any kind of time
series (e.g., from finance, oceanography, and seismology). However, we will here
only consider EEG signals. More specifically, we will present promising results
on the early prediction of Alzheimer’s disease based on electroencephalograms
(EEG).

This paper is organized as follows. In the next section, we introduce SES
for multi-dimensional point processes; we describe the underlying statistical
model in Section 3. Inference in that model is carried out by applying the
max-product algorithm on a factor graph of that model. That factor graph
is discussed in Section 4; the inference method is outlined in Section 5 and
derived in detail in Appendix C. In Section 6, we list several extensions of the
basic multi-dimensional SES model. In Section 7, we investigate the robustness
and reliability of the SES inference method by means of surrogate data. In
Section 8, we apply that method to detect abnormalities in the EEG synchrony
of MCI disease patients. We offer some concluding remarks in Section 9.

2 Principle

Suppose that we are given a pair of continuous-time signals, e.g., EEG signals
recorded from two different channels, and we wish to determine the similarity
of those two signals. As a first step, we extract point processes from those
signals, which may be achieved in various ways. As an example, we generate
point processes in time-frequency domain: first the time-frequency (“wavelet”)
transform of each signal is computed in a frequency band f ∈ [fmin, fmax].
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Next those maps are approximated as a sum of half-ellipsoid basis func-
tions, referred to as “bumps” (see Fig. 1; we will provide more details on
bump modeling in Section 8.2.3). Each bump is described by five param-
eters: time t, frequency f , width ∆t, height ∆f , and amplitude w. The re-
sulting bump models e = ((t1, f1,∆t1,∆f1, w1), . . . , (tn, fn,∆tn,∆fn, wn)) and
e′ = ((t′1, f

′
1,∆t

′
1,∆f

′
1, w

′
1), . . . , (t

′
n′, f ′

n′,∆t′n′ ,∆f ′
n′, w′

n′)) represent the most
prominent oscillatory activity in the signals at hand. This activity may corre-
spond to various physical or biological phenomena, for example:

• oscillatory events in EEG and other brain signals are believed to occur when
assemblies of neurons are spiking in synchrony (Buzsáki, 2006; Nunez et al.,
2006),

• oscillatory events in calcium imaging data are due to oscillations of intra-
cellular calcium, which are believed to play an important role in signal
transduction between cells (see, e.g., (Völkers et al., 2006)),

• oscillations and waves are of central interest in several fields beyond neu-
roscience, such as oceanography (e.g., oceanic “normal modes” caused by
convection (Kantha et al., 2006)) and seismography (e.g., free earth oscilla-
tions and earth oscillations induced by earthquakes, hurricanes, and human
activity (Alder et al., 1972)).

In the following, we will develop SES for bump models. In this setting, SES
quantifies the synchronous interplay between oscillatory patterns in two given
signals, while it ignores the other components in those signals (“background
activity”). In contrast, classical synchrony measures such as amplitude or
phase synchrony are computed from the entire signal, they make no distinc-
tion between oscillatory components and the background activity. As a conse-
quence, SES captures alternative aspects of similarity, and hence, it provides
complementary information about synchrony.

Besides bump models, SES may be applied to other sparse representations of
signals, for example:

• matching pursuit (Mallat et al., 1993) and refinements such as orthogonal
matching pursuit (Tropp et al., 2005), stage-wise orthogonal matching pur-
suit (Donoho et al., 2006), tree matching pursuit (Duarte et al., 2005) and
chaining pursuit (Gilbert et al., 2006),

• chirplets (see, e.g., (O’Neill et al., 2000; Cui et al., 2007, 2005)),
• wave atoms (Demanet et al., 2007),
• curvelets (Candès et al., 2002),
• sparsification by loopy belief propagation (Sarvotham et al., 2006),
• the Hilbert-Huang transform (Huang et al., 1998),
• compressed sensing (Candès et al., 2006; Donoho, 2006).
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Fig. 1. Two-dimensional stochastic event synchrony. Top: two given EEG signals in
time-frequency domain; Bottom: bump models extracted from those time-frequency
maps. Stochastic event synchrony quantifies the similarity of two such bump models.

Moreover, the point processes may be defined in other spaces than the time-
frequency plane, for example, they may occur in two-dimensional space (e.g.,
images), space-frequency (e.g., wavelet image coding) or space-time (e.g., movies);
they may also be defined on more complicated manifolds, such as curves, sur-
faces, etc. Such extensions may straightforwardly be derived from the example
of bump models. We consider several extensions in Section 6.

Our extension of stochastic event synchrony to multi-dimensional point pro-
cesses (and bump models in particular) is derived from the following obser-
vation (see Fig. 2(a)): bumps in one time-frequency map may not be present
in the other map (“non-coincident” bumps); other bumps are present in both
maps (“coincident bumps”), but appear at slightly different positions on the
maps. The black lines in Fig. 2(b) connect the centers of coincident bumps,
and hence, visualize the offsets between pairs of coincident bumps.

Such offsets jeopardize the suitability of classical similarity measures for time-
frequency maps. For example, let us consider the Pearson correlation coeffi-

5



1
2

3

00 5 10 15 20

5

10

15

20

25

30

t [s]

f
[H

z]

(a) Bump models of two EEG channels (one in red, the other in blue).
One can observe pairs of bumps that are coincident (“matched”), other
bumps are not overlapping and cannot be matched to bumps from the
other bump model. Under the assumption that large frequency offsets
between bumps are not likely to occur, bump nr. 1 (t = 10.7s) should
be paired with bump nr. 3 (t = 10.9s) and not with nr. 2 (t = 10.8s),
since the former is much closer in frequency than the latter. Such prior
information may be incorporated by means of conjugate priors for st

and sf , i.e., scaled inverse chi-square distributions.
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(b) Coincident bumps (ρ = 27%); the black lines connect the centers of
coincident bumps.

Fig. 2. Coincident and non-coincident activity.

cient r between two time-frequency maps x1(t, f) and x2(t, f):

r =

∑

t,f(x1(t, f) − x̄1)(x2(t, f) − x̄2)
√
∑

t,f (x1(t, f) − x̄1)2
√
∑

t,f(x2(t, f) − x̄2)2
, (1)

where x̄i =
∑

t,f xi(t, f) (i = 1, 2). Note that r, like many other classical
similarity measures, is based on pointwise comparisons, in other words, it
compares the activity at instance (t, f) in map x1 to the activity in x2 at the
same instance (t, f). Therefore, if the correlated activity in the maps x1(t, f)
and x2(t, f) is slightly delayed or a little shifted in frequency, the correlation
coefficient r will be small, and as a result, it may not be able to capture the
correlated activity. Our approach alleviates this shortcoming, since it explicitly
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Fig. 3. Generative model for e and e′. One first generates a hidden process v, next one
makes two identical copies of v and shifts those over (−δt/2,−δf /2) and (δt/2, δf /2)
respectively; the events of the resulting point process are slightly shifted (with vari-
ance (st,sf )), and some of those events are deleted (with probability pd), resulting
in e and e′.

handles delays and frequency offsets.

We quantify the interdependence between two bump models by five parame-
ters, i.e., the parameters ρ, δt, and st introduced in Part I, in addition to:

• δf : the average frequency offset between coincident bumps,
• sf : the variance of the frequency offset between coincident bumps.

We determine those 5 parameters and the pairwise alignment of e and e′

by statistical inference, as in the one-dimensional case (cf. Section 3 and 4
in Part I). We start by constructing a statistical model that captures the
relation between the two bump models e and e′; that model contains the 5 SES
parameters, besides variables related to the pairwise alignment of the bumps
of e and e′. Next we perform inference in that model, resulting in estimates for
the SES parameters and the pairwise alignment. More concretely, we apply
coordinate descent, as in the case of one-dimensional point processes. In the
following section, we outline our statistical model. In Section 4, we describe
the factor graph of that model. From that factor graph, we derive the inference
algorithm for multi-dimensional SES; in Section 5, we outline that inference
algorithm. We refer to Appendix C for the detailed derivations. In Section 6,
we suggest various extensions of our statistical model.

7



Symbol Explanation

e and e′ the two given bump models

t and t′ occurrence time of the bumps of e and e′

f and f ′ frequencies of the bumps of e and e′

∆t and ∆t′ width of the bumps of e and e′

∆f and ∆f ′ height of the bumps of e and e′

v hidden bump model from which the observed bump models e and e′

are generated

ẽ and ẽ′ bump models obtained by shifting v over (δt/2, δf/2) and

(-δt/2, -δf/2) resp. and randomly perturbing the timing and

frequency of the resulting sequences (with variance st/2 and sf/2 resp.)

b and b′ binary sequences that indicate whether bumps in e and e′ resp.

are coincident or not

c binary sequence that indicates whether a particular bump in e is

coincident with a particular bump in e′, more precisely, ckk′ = 1

iff ek is coincident with e′k′ and is zero otherwise

j and j′ indices of the coincident bumps in e and e′ resp.

n and n′ length of e and e′ resp.

ℓ length of v

δt and δf timing and frequency offset resp. between e and e′

st and sf timing and frequency jitter resp. between e and e′

Table 1
List of variables and parameters associated with models p(e, e′, j, j′, θ) (8) and
p(e, e′, b, b′, c, θ) (16).

3 Statistical Model

In this section, we explain the statistical model that forms the foundation of
multivariate SES. For reasons that will be explained in the following, we will
represent the model in two different ways (see (8) and (16)). For the sake of
clarity, we listed in Table 1 the most important variables and parameters that
appear in those representations. We will use the notation θ = (δt, st, δf , sf).

Fig. 3 illustrates how we extend the generative procedure underlying one-
dimensional SES (cf. Part I) to the time-frequency domain. As a first step,
one again generates a hidden point process v (dotted bumps in Fig. 3). The
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number ℓ of bumps vk is also now described by a geometric prior, in particular:

p(ℓ) = (1 − λ̃)λ̃ℓ, (2)

with λ̃ = λ(tmax − tmin)(fmax−fmin) ∈ (0, 1). (We motivate this choice of prior
in Part I.) The centers (t̃k, f̃k) of those bumps are placed uniformly within the
rectangle [tmin, tmax] × [fmin, fmax], and as a consequence:

p
(

t̃, f̃ |ℓ
)

=
1

(tmax − tmin)ℓ(fmax − fmin)ℓ
. (3)

The amplitudes, widths and heights of the bumps vk are independently and
identically distributed according to priors pw, p∆t and p∆f respectively. Next,
from bump model v, one generates the bump models e and e′ as follows:

(1) One starts by making two copies ẽ and ẽ′ of bump model v,
(2) One generates new amplitudes wk, widths ∆tk, and heights ∆fk for the

bumps ẽk by drawing (independent) samples from the priors pw, p∆t and
p∆f respectively. Likewise, one generates new amplitudes w′

k and widths
∆t′k and ∆f ′

k for the bumps ẽ′k,

(3) One shifts the bumps ẽk and ẽ′k over (− δ̄t

2
,− δ̄f

2
) and ( δ̄t

2
,

δ̄f

2
) respectively

with:

δ̄t = δt (∆tk + ∆t′k), (4)

δ̄f = δf (∆fk + ∆f ′
k). (5)

(4) Next, one adds small random perturbations to the position of the bumps
ẽk and ẽ′k (cf. Fig. 3), modeled as zero-mean Gaussian random vectors with
diagonal covariance matrix diag( s̄t

2
,

s̄f

2
):

s̄t = st (∆tk + ∆t′k)
2, (6)

s̄f = sf (∆fk + ∆f ′
k)

2. (7)

(5) At last, one randomly removes bumps from ẽ and ẽ′: each bump is deleted
with probability pd independently of the other bumps, resulting in the
bump models e and e′.

As in the one-dimensional case, the above generative procedure (cf. Fig. 3)
may straightforwardly be extended from a pair of point processes e and e′ to a
collection of point processes, but inference in the resulting probabilistic model
is intractable; we will present approximate inference algorithms in a future
report.

Also in the multi-dimensional case, event synchrony is inherently ambiguous;
as an illustration, Fig. 4 shows two procedures to generate the same point
processes e and e′. If st is large, with high probability events in e and e′ will
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not be ordered in time; for example, the events (1,2) and (3’,4’) in Fig. 4(a)
are reversed in time. Ignoring this fact will result in estimates of st that are
smaller than the true value st. The SES algorithm will most probably correctly
infer the coincident event pairs (3,3’) and (4,4’), since those pairs are far apart
in frequency, and therefore, event 3 is closer to event 3’ than it is to event 4’.
However, it will most probably treat (1’,2) and (1,2’) as coincident event pairs
instead of (1,2) and (1’,2’) (see Fig. 4(b)), since event 1 is much closer to
event 2’ than event 2. As a consequence, SES will underestimate st. However,
the bias will be smaller than in the one-dimensional case: the SES algorithm
will only incorrectly align pairs of events if those pairs of events have about
the same frequency (as events 1, 1’, 2, and 2’ in Fig. 4); if those events are
far apart in frequency (as events 3, 3’, 4, and 4’ in Fig. 4), potential time
reversals will be correctly inferred. This observations obviously carries over to
any other kind of multi-dimensional point processes.

Besides timing reversals, some event deletions may be ignored: in Fig. 4(a)
events 5 and 6 are non-coincident, however, in the procedure of Fig. 4(b) they
are both coincident. The latter generative procedure is simpler in the sense
that it involves less deletions and the perturbations are slightly smaller. As a
result, the parameter ρ (and hence also pd) is generally underestimated. How-
ever, also this bias will be smaller than in the one-dimensional case. Indeed, if
the events 5 and 6 had strongly different frequencies, the SES algorithm would
probably not treat them as a coincident pair. Obviously, also this observation
extends to any kind of multi-dimensional point processes.

The generative procedure of Fig. 3 leads to the two-dimensional extension of
the one-dimensional SES model (cf. (26) in Part I):

p(e, e′, j, j′, θ) = γ βntot
non-cop(δt)p(st)p(δf)p(sf)

ntot
co∏

k=1

pw(wjk
)pw(w′

j′
k
)

· p∆t(∆tjk
)p∆t(∆t

′
j′
k
)p∆f(∆fjk

)p∆f(∆f
′
j′
k
)

· N
(

t′j′
k
− tjk

; δ̄t, s̄t

)

N
(

f ′
j′
k
− fjk

; δ̄f , s̄f

)

, (8)

with δ̄t = δt (∆tjk
+ ∆t′j′

k
), δ̄f = δf (∆fjk

+ ∆f ′
j′
k
), s̄t = st (∆tjk

+ ∆t′j′
k
)2,

s̄f = sf (∆fjk
+ ∆f ′

j′
k
)2, and where the constant β is again given by:

β = pd

√
λ, (9)

and

γ =
(√

λ (1 − pd)
)n+n′

(1 − λ̃)
1

1 − p2
d λ̃
, (10)

with λ̃ = λ(tmax − tmin)(fmax − fmin). In model (8) the priors pw, p∆t and p∆f

for the bump parameters wjk
, w′

j′
k
, ∆tjk

, ∆t′j′
k
, ∆fjk

, and ∆f ′
j′
k

respectively are
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(a) A first procedure to generate e and e′; interestingly, events 3
and 3’ are closer in timing than 3 and 4’ (and likewise 3’ and 3 vs. 3’
and 4), but not in frequency, and therefore the multi-dimensional
SES algorithm will treat (3,3’) and (4,4’) as coincident pairs. In
other words, despite the reversal in timing (as indicated by the
arrows), the events will be correctly grouped in pairs. Note that
events 5 and 6 are non-coincident, and that (1,1’) and (2,2’) are
coincident event pairs.
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(b) A second procedure to generate the same point processes e and
e′. Event pairs (1’,2) and (1,2’) are now coincident, or equivalently,
event 1 plays now the role of event 2 in Fig. 4(a) (as indicated by
the arrow). Since event 1 is much closer to event 2’ than event 1’,
the SES inference algorithm will most probably prefer the align-
ment (1,2’) and (1’,2) instead of (1,1’) and (2,2’). Note that (5,6)
are now coincident event pairs; since events 5 and 6 are close, the
SES algorithm would consider them as coincident.

Fig. 4. Inherent ambiguity in event synchrony: two equivalent procedures to generate
the multi-dimensional point processes e and e′.
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irrelevant for what follows; we will therefore discard them from now on. We
will also discard the constant γ in (8), since it does not depend on j and j′; as
a consequence, it is not relevant for determining j, j′ and the SES parameters.
The parameter β, however, clearly affects the inference of j, j′ and the SES
parameters, since the exponent of β in (8) does depend on j and j′. We will
elaborate on the priors of the parameters θ = (δt, st, δf , sf) later on.

As in the one-dimensional case, it is instructive to consider the negative log-
arithm of (8):

− log p(e,e′, j, j′, θ) =
ntot

co∑

k=1

[ (t′j′
k
− tjk

− δt)
2

2st(∆tjk
+ ∆t′j′

k
)2

+
(f ′

j′
k
− fjk

− δf )
2

2sf(∆fjk
+ ∆f ′

j′
k
)2

+
1

4
log 4π2st(∆tjk

+ ∆t′j′
k
)2sf(∆fjk

+ ∆f ′
j′
k
)2
]

− ntot
non-co log β

− log p(δt)p(st)p(δf )p(sf) + ζ, (11)

with ζ is an irrelevant constant. The expression (11) may be considered as a
cost function, along the lines of the one-dimensional case; the unit cost d(st)
associated to each non-coincident event equals:

d(st) = − log β. (12)

The unit cost d(ejk
, e′j′

k
) of each event pair (ejk

,e′j′
k
) is given by:

d(ejk
, e′j′

k
) =

(t′j′
k
− tjk

− δt)
2

2st(∆tjk
+ ∆t′j′

k
)2

+
(f ′

j′
k
− fjk

− δf )
2

2sf(∆fjk
+ ∆f ′

j′
k
)2

+
1

4
log

(

4π2st(∆tjk
+ ∆t′j′

k
)2sf (∆fjk

+ ∆f ′
j′
k
)2
)

. (13)

Interestingly, the first two terms in (13) may be viewed as an Euclidian dis-
tance. Since the point processes e and e′ of Fig. 1 are defined on the time-
frequency plane, the Euclidean distance is indeed a natural metric. Note that
the Euclidian distance is normalized: the timing and frequency offsets are nor-
malized by the bump width and height, due to the particular choices (4)–(7).
Fig. 5 explains why normalization is crucial.

In the one-dimensional model proposed in Part I, the third term in (13) is
absorbed into the unit cost d(st). In the multi-dimensional case, however, that
is no longer possible: that term depends on the width and height of the two
events ejk

and e′j′
k
, and cannot be decomposed in a term that only depends on

the parameters of ejk
and a second term that only depends on the parameters

of e′j′
k
; in other words, the third term in (13) cannot be interpreted as unit

costs of single events.

In our model of one-dimensional SES, we did not consider the width of events,
instead we only incorporated the occurrence time, since that suffices for most
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Fig. 5. Bumps 1 and 2 are farther apart than 3 and 4, although the distance between
their centers is identical. Therefore, in order to quantify the distance between bumps,
it is necessary to normalize the distance between the bump centers by the bump
widths (cf. (11)).

common applications. However, the model could easily be extended to include
event widths, if necessary.

We wish to point out that the unit costs d(st) (12) and d(ejk
, e′j′

k
) (13) are

in general not dimensionless; the total cost (11), however, is dimensionless,
in the sense that a change in units will affect the total cost by a constant,
irrelevant term. In the one-dimensional case considered in Part I, the unit
costs are dimensionless, since the third term in (13) is there absorbed into the
unit cost d(st).

In principle, one may determine the sequences j and j′ and the parameters θ by
coordinate descent along the lines of the algorithm of one-dimensional SES.
In the multi-dimensional case, however, the alignment cannot be solved by
the Viterbi algorithm (or equivalently, the max-product algorithm applied on
a cycle-free factor graph of model (8)): one needs to allow timing reversals
(see Fig. 4), therefore, the indices jk and j′k′ are no longer necessarily mono-
tonically increasing; as a consequence, the state space becomes substantially
larger.

Instead of applying the max-product algorithm on a cycle-free factor graph of
model (8), we apply that algorithm on a cyclic factor graph, which will amount
to a practical procedure to obtain pairwise alignments of multi-dimensional
point processes (and bump models in particular); we will show that it finds the
optimal solution under very mild conditions. In order to derive this procedure,
we introduce a parametrization of model (8) that is naturally represented by a
cyclic graph. For each pair of events ek and e′k′, we introduce a binary variable
ckk′ that equals one if ek and e′k′ form a pair of coincident events and is zero
otherwise. Since each event in e associated to at most one event in e′, we have
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the constraints:

n′

∑

k′=1

c1k′

△

= s1 ∈ {0, 1},
n′

∑

k′=1

c2k′

△

= s2 ∈ {0, 1}, . . . ,
n′

∑

k′=1

cnk′

△

= sn ∈ {0, 1}. (14)

Similarly, each event in e′ is associated to at most one event in e, which may
be expressed by a similar set of constraints. The sequences s and s′ are related
to the sequences b and b′ (cf. Part I) as follows:

bk = 1 − sk and b′k = 1 − s′k. (15)

From the variables ckk′ (with k = 1, . . . , n and k′ = 1, . . . , n′), one can also
easily determine the sequences j and j′. Indeed, if ckk′ = 1, the index k and
k′ appear in j and j′ respectively.

In this representation, the global statistical model (8) can be cast as:

p(e, e′, b, b′, c, θ) ∝
n∏

k=1

(β δ[bk − 1] + δ[bk])
n′

∏

k′=1

(β δ[b′k − 1] + δ[b′k])

·
n∏

k=1

n′

∏

k′=1

(

N
(

t′k′ − tk; δ̄t, s̄t

)

N
(

f ′
k′ − fk; δ̄f , s̄f

))ckk′

· p(δt)p(st)p(δf )p(sf)
n∏

k=1

(

δ[bk +
n′

∑

k′=1

ckk′ − 1]
)

·
n′

∏

k′=1

(

δ[b′k′ +
n∑

k=1

ckk′ − 1]
)

, (16)

where δ[·] is the Kronecker delta, the variables ckk′, bk, and bk′ are binary,
and δ̄t = δt (∆tk + ∆t′k′), δ̄f = δf (∆fk + ∆f ′

k′), s̄t = st (∆tk + ∆t′k′)2, s̄f =
sf (∆fk + ∆f ′

k′)2. The last two factors in (16) encode the expressions (15).

We now comment on the priors of the parameters θ = (δt, st, δf , sf). Since we
(usually) do not need to encode prior information about δt and δf , we choose
improper priors p(δt) = 1 = p(δf). On the other hand, one may have prior
knowledge about st and sf . For example, in the case of spontaneous EEG (see
Section 8), we a priori expect the frequency jitter sf to be small: frequency
shifts can only be caused by non-linear transformations, which are hard to
justify from a physiological perspective, therefore, we expect bumps to appear
at about the same frequency in both time-frequency maps. On the other hand,
the timing jitter st may be larger, since signals often propagate over significant
distances in the brain, and therefore, timing jitter arises quite naturally. For
example, bump nr. 1 in Fig. 2(a) (t = 10.7s) should then be paired with bump
nr. 3 (t = 10.9s) and not with nr. 2 (t = 10.8s), since the former is much closer
in frequency than the latter. One may encode such prior information by means
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Fig. 6. Scaled inverse chi-square distributions for various values of the degrees of
freedom ν and widths s0; s0 = 0.1 (solid) and 0.3 (dashed).

of conjugate priors for st and sf , i.e., scaled inverse chi-square distributions:

p(st) =
(s0,tνt/2)νt/2

Γ(νt/2)

e−νts0,t/2st

s
1+νt/2
t

(17)

p(sf) =
(s0,fνf/2)νf/2

Γ(νf/2)

e−νf s0,f /2sf

s
1+νf/2
f

, (18)

where νt and νf are the degrees of freedom and Γ(x) is the Gamma function.
In the example of spontaneous EEG, the widths s0,t and s0,f are chosen such
that s0,t < s0,f , since sf is expected to be smaller than st. Fig. 6 shows the
scaled inverse chi-square distribution with ν = 20, 40, . . . , 100 and s0 = 0.1
and 0.3.

4 Factor Graph

To perform inference in model (16), we use a factor graph of that model
(see Fig. 7); each edge represents a variable, each node corresponds to a factor
of (16), as indicated by the arrows at the right hand side—we refer to Ap-
pendix A for an introduction to factor graphs. We omitted the edges for the
(observed) variables tk, t

′
k′, fk, f

′
k′, wk, w

′
k′, ∆tk, ∆t′k′ , ∆fk, and ∆f ′

k′ in order
not to clutter the figure. In the following, we discuss the nodes in Fig. 7 (from
top to bottom):

• The nodes denoted by β correspond to the factors (βδ[bk − 1] + δ[bk]) and
(βδ[b′k − 1] + δ[b′k]).

• The nodes denoted by Σ̄ represent the factors
(

δ[bk +
∑n′

k′=1 ckk′ −1]
)

(blue)

and
(

δ[b′k′ +
∑n

k=1 ckk′ − 1]
)

(red); see also row 4 in Table C.1.

• The equality constraint nodes (marked by “=”) enforce the equality of the
incident variables; see also row 3 in Table C.1.
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ttt

p(δt, st, δf , sf) = p(δt)p(st)p(δf)p(sf)

δ[bn +
∑n′

k′=1 cnk′ − 1]

δ[b′n′ +
∑n

k=1 ckn′ − 1]

δ[bn] + β δ[bn − 1]

δ[b′n′ ] + β δ[b′n′ − 1]

(

N
(

t′n′ − tn; δ̄t, s̄t

)

N
(

f ′
n′ − fn; δ̄f , s̄f

))cnn′

=

== === = ===

Σ̄Σ̄ Σ̄Σ̄ Σ̄Σ̄

θ = (δt, st, δf , sf)

N NNNNNNNN

βββββ β

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . .

C11 C12 C1n′ C21 C22 C2n′ Cn1 Cn2 Cnn′

B1 B2 BnB′
1 B′

2 B′
n′

Fig. 7. Factor graph of model (16); each edge represents a variable, each node
corresponds to a factor of (16), as indicated by the arrows at the right hand side.
More details on factor graphs can be found in Appendix A.

• The nodes N corresponds to the Gaussian distributions in (16), more pre-
cisely, they correspond to the factors

gN (ckk′; θ) =
(

N
(

t′k′ − tk; δ̄t, s̄t

)

N
(

f ′
k′ − fk; δ̄f , s̄f

))ckk′

, (19)

where δ̄t = δt (∆tk + ∆t′k′), δ̄f = δf (∆fk + ∆f ′
k′), s̄t = st (∆tk + ∆t′k′)2,

s̄f = sf (∆fk + ∆f ′
k′)2.

• The bottom node stands for the prior:

p(θ) = p(δt, st, δf , sf) = p(δt)p(st)p(δf)p(sf). (20)

5 Statistical Inference

We determine the alignment c = (c11, c12, . . . , cnn′) and the parameters θ =
(δt, st, δf , sf) by maximum a posteriori (MAP) estimation:

(ĉ, θ̂) = argmax
c,θ

p(e, e′, c, θ), (21)
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where p(e, e′, c, θ) is obtained from p(e, e′, b, b′, c, θ) (16) by marginalizing over
b and b′:

p(e, e′, c, θ) ∝
n∏

k=1

(

βδ
[ n′

∑

k′=1

ckk′

]

+ δ
[ n′

∑

k′=1

ckk′ − 1
])

·
n∏

k=1

n′

∏

k′=1

(

N
(

t′k′ − tk; δ̄t, s̄t

)

N
(

f ′
k′ − fk; δ̄f , s̄f

))ckk′

· p(δt)p(st)p(δf)p(sf). (22)

From ĉ, we obtain the estimate ρ̂ as:

ρ̂ =
n+ n′ − 2

∑n
k=1

∑n′

k′=1 ĉkk′

n+ n′
=

∑n
k=1 b̂k +

∑n′

k=1 b̂
′
k′

n + n′
. (23)

The MAP estimate (21) is intractable, and we try to obtain (21) by coordinate

descent: first, the parameters θ are initialized (e.g., δ̂
(0)
t = 0 = δ

(0)
f , ŝ

(0)
t = s0,t,

and ŝ
(0)
f = s0,f), then one alternates the following two update rules until

convergence (or until the available time has elapsed):

ĉ(i+1) = argmax
c

p(e, e′, c, θ̂(i)) (24)

θ̂(i+1) = argmax
θ

p(e, e′, ĉ(i+1), θ). (25)

The estimate θ̂(i+1) (25) is available in closed-form, as we show in Appendix C.
In that appendix, we also show that the alignment (24) is equivalent to a clas-
sical problem in combinatorial optimization, known as max-weight bipartite
matching (see, e.g., (Gerards, 1995; Pulleyblank, 1995; Bayati et al., 2005,
2007; Huang et al., 2007; Sanghavi, 2007a,b)). There is a variety of ways to
solve that problem. We will describe one of them in more detail, i.e., the max-
product algorithm, since it is arguably the simplest approach. That algorithm
can be derived by means of the graph of Fig. 7. It operates by sending infor-
mation (“messages”) along the edges of that graph, as illustrated in Fig. 8.
The “messages”, depicted by arrows, contain (probabilistic) information about
which pairs of bumps are coincident and which are not; they are computed
according to a generic rule, i.e., the max-product rule. Intuitively, the nodes
may be viewed as computing elements that iteratively update their opinion
about the bump matching, based on the opinions (“messages”) they receive
from neighboring nodes. When the max-product algorithm eventually has con-
verged and the nodes have found a “consensus”, the messages are combined
to obtain a decision on c, b and b′, and an estimate of ρ. In Appendix C, we
derive the algorithm (24)(25) in detail; it is summarized in Table 2.

The computational complexity of this algorithm is in principle proportional to
nn′, i.e., the product of both sequence lengths. If one excludes pairs of events
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INPUT: Models e and e′, parameters β, νt, νf , s0,t, s0,f , δ̂
(0)
t , δ̂

(0)
f , ŝ

(0)
t , and ŝ

(0)
f

ALGORITHM: Iterate the following two steps until convergence:

(1) Update the alignment ĉ by max-product message passing

Initialize messages µ↓′(ckk′) = 1 = µ↓′′(ckk′)

Iterative until convergence:

a. Upward messages:

µ↑′(ckk′)∝µ↓′′(ckk′)gN (ckk′ ; θ̂(i))

µ↑′′(ckk′)∝µ↓′(ckk′)gN (ckk′ ; θ̂(i)),
where

gN (ckk′ ; θ̂(i)) =

(

N
(

t′k′ − tk; δ̄
(i)
t , s̄

(i)
t

)

N
(

f ′
k′ − fk; δ̄

(i)
f , s̄

(i)
f

)
)ckk′

,

with δ̄
(i)
t = δ̂

(i)
t (∆tk + ∆t′k′), δ̄

(i)
f = δ̂

(i)
f (∆fk + ∆f ′

k′), s̄
(i)
t = ŝ

(i)
t (∆tk + ∆t′k′)2,

s̄
(i)
f = ŝ

(i)
f (∆fk + ∆f ′

k′)2

b. Downward messages:




µ↓′(ckk′ = 0)

µ↓′(ckk′ = 1)



 ∝




max

(
β,maxℓ′ 6=k′ µ↑′(ckℓ′ = 1)/µ↑′(ckℓ′ = 0)

)

1








µ↓′′(ckk′ = 0)

µ↓′′(ckk′ = 1)



 ∝




max (β,maxℓ 6=k µ↑′′(cℓk′ = 1)/µ↑′′(cℓk′ = 0))

1





Compute marginals p(ckk′) ∝ µ↓′(ckk′)µ↓′′(ckk′)gN (ckk′ ; θ̂(i))

Compute decisions ĉkk′ = argmaxckk′
p(ckk′)

(2) Update the SES parameters:

δ̂
(i+1)
t =

1

n(i+1)

n(i+1)
∑

k=1

t̂
′(i+1)
k − t̂

(i+1)
k

∆t̂
(i+1)
k + ∆t̂

′(i+1)
k

δ̂
(i+1)
f =

1

n(i+1)

n(i+1)
∑

k=1

f̂
′(i+1)
k − f̂

(i+1)
k

∆f̂
(i+1)
k + ∆f̂

′(i+1)
k

ŝ
(i+1)
t =

νts0,t + n(i+1)ŝ
(i+1)
t,sample

νt + n(i+1) + 2

ŝ
(i+1)
f =

νfs0,f + n(i+1)ŝ
(i+1)
f,sample

νf + n(i+1) + 2
,

OUTPUT: Alignment ĉ and SES parameters ρ̂, δ̂t, δ̂f , ŝt, ŝf

Table 2
Inference algorithm for multi-dimensional SES.
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tt

(

N
(

t′n′ − tn; δ̄
(i)
t , s̄

(i)
t

)

N
(

f ′
n′ − fn; δ̄

(i)
f , s̄

(i)
f

))cnn′

µ↑′′
µ↑′

µ↓′′

µ↓′

µ↑ µ↓

== === = ===
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Fig. 8. Max-product message passing; the messages indicate the max-product mes-
sages, computed according to the max-product update rule (see Appendix C).

that are too far apart on the time-frequency map, one obtains an algorithm
with linear complexity (as in the one-dimensional case).

The fixed points of the algorithm can be characterized as follows: the fixed
point θ̂ is a stationary point of (22), and the alignment ĉ is “neighborhood
maximum”, i.e., the posterior probability (22) of ĉ is guaranteed to be greater
than all other assignments in region around that assignment ĉ (Freeman et
al., 1999).

The algorithm is an instance of coordinate descent, and is therefore guaran-
teed to converge if the conditional maximizations (24)(25) have unique solu-
tions (Bezdek et al., 2002, 1987). The conditional maximization (25) always
has a unique solution (cf. (C.1)–(C.4)). If the alignment (24) has a unique
solution, the max-product algorithm is guaranteed to find that unique opti-
mum (Bayati et al., 2005; Huang et al., 2007; Bayati et al., 2007; Sanghavi,
2007a,b). Therefore, as long as (24) has a unique solution, the algorithm of Ta-
ble 2 is guaranteed to converge. In many applications, the optimum of (24)
is unique with probability one, and as a consequence, the proposed algorithm
converges. We will provide numerical results in Section 8.

6 Extensions

So far, we have developed multi-dimensional SES for the particular example of
bump models in the time-frequency domain. Here we consider alternative SES
models, both in time-frequency domain and in other domain. Those models are
straightforward extensions of (8). We will also outline how the SES inference
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algorithm can be modified accordingly.

6.1 Bump Parameters

One may incorporate differences in amplitude, width and height between the
bumps of e and e′ in model (8). In the generative process of Fig. 3, those
parameters are then no longer drawn independently from certain prior distri-
butions; instead they are obtained by perturbing the parameters of the hidden
bump model v. In particular, one may again consider Gaussian perturbations,
as for the timing t, t′ and frequency f, f ′ of the bumps. This leads to additional
parameters δw, δ∆t, δ∆f , sw, s∆t, and s∆f , which stand for the average offset
and jitter between the bump amplitudes, widths and heights of e and e′ re-
spectively; it also leads to additional Gaussian factors in model (8). Moreover,
priors for those additional parameters can be included in that model, leading
to the expression:

p(e, e′, j, j′, θ) = γ βntot
non-cop(δt)p(st)p(δf )p(sf)p(δw)p(sw)p(δ∆t)p(s∆t)p(δ∆f)p(s∆f)

· N
(

t′j′
k
− tjk

; δ̄t, s̄t

)

N
(

f ′
j′
k
− fjk

; δ̄f , s̄f

)

N
(

w′
j′
k
− wjk

; δw, sw

)

· N
(

∆t′j′
k
− ∆tjk

; δ∆t
, s∆t

)

N
(

∆f ′
j′
k
− ∆fjk

; δ∆f
, s∆f

)

, (26)

where the parameters β and γ are again given by (9) and (10) respectively.

The inference algorithm for this model is very similar to the one of model (8)
(cf. Table 2). The additional parameters δw, δ∆t, δ∆f , sw, s∆t, and s∆f are
updated similarly as δt, δf , st, and sf . The alignment procedure is almost
identical, one merely needs to modify the upward message gN (see Step 1
in Table 2): besides the Gaussian factors for the timing and frequency offsets,
that message contains similar factors for the offsets in bump amplitude, width,
and height (cf. 26).

6.2 Oblique Bumps

Alternatively, one may consider oblique bumps, i.e., bumps that are not nec-
essarily parallel to the time and frequency axes (see Fig. 9). Such bumps
correspond to chirps (see, e.g., (O’Neill et al., 2000; Cui et al., 2007, 2005)).
The rotation angle of each bump ek and e′k′ is denoted by αk and α′

k′ respec-
tively (with αk, α

′
k′ ∈ [0, π/2] for all k and k′). The model (8) can take those

rotations into account: first, the normalization of the timing and frequency
offsets needs to be modified accordingly, second, one may wish to incorporate
the difference in rotation angles αk and α′

k′ of bump ek and e′k′ respectively.
In the generative process of Fig. 3, one may include Gaussian perturbations
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Fig. 9. Two oblique bumps ek and e′k′ with rotation angle αk and α′
k′ .

for the rotation angles. This leads to the following extension of model (8):

p(e, e′, j, j′, θ) = γ βntot
non-cop(δt)p(st)p(δf)p(sf)p(δα)p(sα)

·
ntot

co∏

k=1

pw(wjk
)pw(w′

j′
k
)p∆t(∆tjk

)p∆t(∆t
′
j′
k
)p∆f(∆fjk

)p∆f(∆f
′
j′
k
)

· N
(

t′j′
k
− tjk

; δ̄t, s̄t

)

N
(

f ′
j′
k
− fjk

; δ̄f , s̄f

)

N
(

α′
j′
k
− αjk

; δα, sα

)

, (27)

where δα and sα are the average offset and jitter respectively between the
rotation angles, the parameters β and γ are again given by (9) and (10) re-
spectively, δ̄t = δt (∆̃tjk

+ ∆̃t′j′
k
), δ̄f = δf (∆̃fjk

+ ∆̃f ′
j′
k
), s̄t = st (∆̃tjk

+ ∆̃t′j′
k
)2,

s̄f = sf (∆̃fjk
+ ∆̃f ′

j′
k
)2, with

∆̃tjk
= cosαk ∆tjk

+ sinαk ∆fjk
(28)

∆̃fjk
= sinαk ∆tjk

+ cosαk ∆fjk
(29)

∆̃t′j′
k

= cosα′
k′ ∆t′j′

k
+ sinα′

k′ ∆f ′
j′
k

(30)

∆̃f ′
j′
k

= sinα′
k′ ∆t′j′

k
+ cosα′

k′ ∆f ′
j′
k
. (31)

Note that that model (27) reduces to (8) if αk = 0 = α′
k′ for all k and k′.

The model (27) does not incorporate differences in the amplitude, width, and
height of the bumps, but it could easily be extended if necessary.

In order to extend the SES algorithm of Table 2 to oblique bumps, one needs
to make three modifications:

• In the upward message gN (Step 1 in Table 2) and in the update of the SES
parameters (Step 2), the parameters ∆tk, ∆t′k′, ∆fk, and ∆f ′

k′ are replaced
by ∆̃tk, ∆̃t′k′, ∆̃fk, and ∆̃f ′

k′ .
• If the prior on the parameters δα and sα is the improper prior p(δα) = 1 =
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p(sα), those parameters are updated similarly as δt and st:

δ̂(i+1)
α =

1

n(i+1)

n(i+1)
∑

k=1

α̂
′(i+1)
k − α̂

(i+1)
k (32)

ŝ(i+1)
α =

1

n(i+1)

n(i+1)
∑

k=1

(

α̂
′(i+1)
k − α̂

(i+1)
k − δ̂(i+1)

α

)2
. (33)

Note that since αk, α
′
k ∈ [0, π/2], one can simply add the angle differences.

• The alignment procedure is again almost identical: the upward message
gN (Step 1 in Table 2) contains, in addition to the Gaussian factors for
the timing and frequency offsets, a similar factor for the offsets in bump
rotation angle (cf. (27)).

6.3 Point Processes in Other Spaces

6.3.1 Euclidean Spaces

Until now we have considered bump models in the time-frequency domain.
However, the statistical model (8) directly applies to point processes in other
domains, for example three-dimensional space. Indeed, one can easily verify
that the generative procedure depicted in Fig. 3 is not restricted to time-
frequency domain, since at no point, the procedure relies on particularities
of time-frequency. In general, the constants β and γ in (8) are still defined
by (9) and (10) respectively. The constant λ̃ in (10) is in general defined as
λ̃ = λ vol(S), where S is the space in which the point processes are defined and
vol(S) is the volume of that space. The SES algorithm can straightforwardly
be extended to more general models, along the lines of the extensions we
considered in Section 6.1 and 6.2.

For example, in time and three-dimensional space, SES may be described by
the following statistical model:

p(e, e′, j, j′, θ) = γ βntot
non-cop(δt)p(st)p(δx)p(sx)p(δy)p(sy)p(δz)p(sz)

·
ntot

co∏

k=1

pw(wjk
)pw(w′

j′
k
)p∆t(∆tjk

)p∆t(∆t
′
j′
k
)p∆x(∆xjk

)p∆x(∆x
′
j′
k
)

· p∆y(∆yjk
)p∆y(∆y

′
j′
k
)p∆z(∆zjk

)p∆z(∆z
′
j′
k
)N

(

t′j′
k
− tjk

; δ̄t, s̄t

)

· N
(

x′j′
k
− xjk

; δ̄x, s̄x

)

N
(

y′j′
k
− yjk

; δ̄y, s̄y

)

N
(

z′j′
k
− zjk

; δ̄z, s̄z

)

, (34)

where δ̄t = δt (∆tjk
+ ∆t′j′

k
), δ̄x = δx (∆xjk

+ ∆x′j′
k
), δ̄y = δy (∆yjk

+ ∆y′j′
k
),

δ̄z = δz (∆zjk
+ ∆z′j′

k
), the parameters s̄t, s̄x, s̄y, and s̄z are defined similarly,

and the parameters β and γ are again given by (9) and (10) respectively. The
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parameter λ̃ in (10) is now defined as:

λ̃ = λ(tmax − tmin)(xmax − xmin)(ymax − ymin)(zmax − zmin). (35)

In model (34), the bumps have dispersion in time and space. In some ap-
plications, however, the bumps may only have dispersion in space and no
dispersion in time. In that case, one would need to replace δ̄t and s̄t by δt and
st respectively, and there would be no factors p∆t(∆tjk

) and p∆t(∆t
′
j′
k
).

Note that an SES model for point processes in three-dimensional space may
be directly obtained from model (34); one simply needs to remove the factors

p(δt), p(st), p∆t(∆tjk
), p∆t(∆t

′
j′
k
), and N

(

t′j′
k
− tjk

; δ̄t, s̄t

)

.

The inference algorithm for model (34) can be readily obtained from the algo-
rithm of Table 2. The parameter updates are very similar, and the same holds
for the pairwise alignment procedure: the upward message gN (Step 1 in Ta-
ble 2) contains a Gaussian factors for the timing offsets and similar factors for
the offsets in the three spatial dimensions (cf. (34)).

Interestingly, one can easily combine the above extensions. For example, one
may consider oblique bumps in time and three-dimensional space; that model
may take changes in bump orientation, amplitude and width into account.

6.3.2 Non-Euclidean Spaces

So far, we have considered Gaussian perturbations, or equivalently, Euclidean
distances. In some applications, however, the point processes may be defined
on curved manifolds, and non-Euclidean distances are then more natural. For
instance, the two point processes may be defined on a planar closed curve.
We consider such example in (Dauwels et al., 2008), which concerns the syn-
chrony of morphological and molecular events in cell migration. More specif-
ically, those events are extracted from time-lapse fluorescence resonance en-
ergy transfer (FRET) images of Rac1 activity; the protein Rac1 is well known
to induce filamentous structures that enable cells to migrate. The morpho-
logical and molecular events take place along the cell boundary, and since
we consider images, that boundary is a closed planar curve. We do not take
the dispersion of the events into account, since it is not relevant for the ap-
plication at hand. The morphological and molecular events are denoted by
e = ((t1, u1, w1), . . . , (tn, un, wn)) and e′ = ((t′1, u

′
1, w

′
1), . . . , (t

′
n′ , u′n′, w′

n′)) re-
spectively, where tk and t′k′, uk and u′k′, and wk and w′

k′ denote the occurrence
time, position along the boundary, and the amplitude respectively of the mor-
phological and molecular events. The distance between morphological and
molecular events is non-euclidean. We adopt the following statistical model
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for morphological and molecular events (Dauwels et al., 2008):

p(e, e′, j, j′, θ) = γ βntot
non-cop(δt)p(st)p(δu)p(su)

ntot
co∏

k=1

pw(wjk
)pw(w′

j′
k
)

· N
(

gt(tjk
, t′j′

k
); δt, st

)

N
(

gu(ujk
, u′j′

k
); δu, su

)

, (36)

where gt and gu are non-linear functions that take the shape of the cell bound-
ary into account. Due to those non-linearities, the factors N (gt(tjk

, t′j′
k
); δt, st)

and N (gu(ujk
, u′j′

k
); δu, su) are not Gaussian distributions, and the distance be-

tween events is non-euclidean. The parameters β and γ are again given by (9)
and (10) respectively. The parameter λ̃ in (10) is now defined as:

λ̃ = λ(tmax − tmin)L, (37)

where L is the length of the cell boundary. Extending the algorithm of Table 2
to model (36) is straightforward. The parameter updates (Step 2 in Table 2)
are now given by:

δ̂
(i+1)
t =

1

n(i+1)

n(i+1)
∑

k=1

gt

(

t̂
(i+1)
k , t̂′

(i+1)

k

)

(38)

ŝ
(i+1)
t =

1

n(i+1)

n(i+1)
∑

k=1

(

gt

(

t̂
(i+1)
k , t̂′

(i+1)

k

)

− δ̂
(i+1)
t

)2

(39)

δ̂(i+1)
u =

1

n(i+1)

n(i+1)
∑

k=1

gu

(

û
(i+1)
k , û′

(i+1)

k

)

(40)

ŝ(i+1)
u =

1

n(i+1)

n(i+1)
∑

k=1

(

gu

(

û
(i+1)
k , û′

(i+1)

k

)

− δ̂(i+1)
u

)2

. (41)

The pairwise alignment procedure is almost identical (Step 1 in Table 2), we
again only need to modify the upward message gN :

gN (ckk′; θ̂(i)) =



N
(

gt(tk, t
′
k′); δ̂

(i)
t , ŝ

(i)
t

)

N
(

gu(uk, u
′
k′); δ̂(i)

u , ŝ(i)
u

)





ckk′

.

In the next sections, we will use the basic model (8), since that suffices for our
purposes.

7 Analysis of Surrogate Data

As in the one-dimensional case (Part I, Section 6), we investigate the robust-
ness and reliability of multi-dimensional SES by means of surrogate data.
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We randomly generated 1’000 pairs of two-dimensional point processes (e, e′)
according to the symmetric procedure depicted in Fig. 3.

We considered several values of the parameters ℓ, pd, δt, δf , st, (σt) and sf

(σf ). More specifically, the length ℓ was chosen as ℓ = ℓ0/(1 − pd), where
ℓ0 ∈ N0 is a constant. With this choice, the expected length of e and e′ is ℓ0,
independently of pd. We considered the values ℓ0 = 40 and 100, pd = 0, 0.1,
. . . , 0.4, δt = 0ms, 25ms, 50ms, σt = 10ms, 30ms, and 50ms, δf = 0Hz, 2.5Hz,
5Hz, σf = 1Hz, 2.5Hz, and 5Hz, tmin = 0s, fmin = 0Hz, tmax = ℓ0 · 100ms and
fmax = ℓ0·1Hz. With this choice, the average event occurrence rate is about
10Hz, for all ℓ0 and pd. The width ∆tk and height ∆fk of all bumps is set
equal to 0.5, so that (∆tk + ∆t′k′) = 1 = (∆fk + ∆f ′

k′) for all k and k′, and
hence δ̄t = δt, δ̄f = δf , s̄t = st, and s̄f = sf (cf. (4), (5), (6), (7), and Table 2).

We used the initial values δ̂
(0)
t = 0, 30, and 70ms, δ̂

(0)
f = 0Hz, ŝ

(0)
t = (30ms)2,

and ŝ
(0)
f = (3Hz)2. The parameter β was identical for all parameter settings,

i.e., β = 0.005; it was optimized to yield the best overall results. We used an
uninformative prior for δt, δf , st, and sf ,, i.e., p(δt) = p(δf) = p(st) = p(sf)
= 1.

In order to assess the SES measures S = st, ρ, we compute for each above
mentioned parameter setting the expectation E[S] and normalized standard
deviation σ[S] = σ[S]/E[S]. Those statistics are computed by averaging over
1’000 pairs of point processes (e,e′), randomly generated according to the
symmetric procedure depicted in Fig. 3.

The results are summarized in Fig. 10 to 12. From those figures we can make
the following observations:

• The estimates of st and pd are slightly biased, especially for small ℓ0, i.e.,
ℓ0 = 40, st ≥ (30ms)2 and pd > 0.2; more specifically, the expected value
of those estimates is slightly smaller than the true value, which is due to
ambiguity inherent in event synchrony (cf. Fig. 4). However, the bias is
significantly smaller than in the one-dimensional case (cf. Part I, Section 6);
the bias increases with sf , which is in agreement with our expectations: the
more frequency jitter, the more likely that some events are reversed in
frequency, and hence are aligned incorrectly.

• As in the one-dimensional case, the estimates of δt are unbiased for all
considered values of δt, δf , st, sf , and pd, likewise the estimates of δf (not
shown here).

• The estimates of st do only weakly depend on pd, and vice versa.
• The estimates of st and pd do not depend on δt and δf , i.e., they are robust

to lags δt and frequency offsets δf , since the latter can be estimated reliably.
• The normalized standard deviation of the estimates of δt, st and pd grows

with st and pd, but it remains below 30%. Those estimates are therefore
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Fig. 10. Results for surrogate data: the figure shows the expected value E[σ̂t] and
E[ρ̂] and the normalized standard deviation σ̄[σ̂t] and σ̄[ρ̂] for the parameter settings
ℓ0 = 40 and 100, δt = 0, 25, 50ms, δf = 0, 2.5, 5Hz, σt = 10, 30, 50ms, σf = 1Hz and
pd = 0, 0.1, . . . , 0.4. The curves for different δt and δt are practically coinciding.
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Fig. 11. Results for surrogate data: the figure shows the expected value E[σ̂t] and
E[ρ̂] and the normalized standard deviation σ̄[σ̂t] and σ̄[ρ̂] for same the parameter
settings as in Fig. 10, but now with σf = 2.5Hz. Again, the curves for different δt

and δf are practically coinciding.
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Fig. 12. Results for surrogate data: the figure shows the expected value E[σ̂t] and
E[ρ̂] and the normalized standard deviation σ̄[σ̂t] and σ̄[ρ̂] for same the parameter
settings as in Fig. 10, but now with σf = 5Hz. Again, the curves for different δt and
δf are practically coinciding.
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reliable.
• The expected value of st and pd does hardly depend on the length ℓ0. On

the other hand, the estimates of st and pd are less biased for larger ℓ0.
The normalized standard deviation of the SES parameters decreases as the
length ℓ0 increases, as expected.

In summary, by means of the SES inference method, one may reliably and
robustly determine the timing dispersion st and event reliability ρ of pairs
of multi-dimensional point processes. We wish to reiterate, however, that it
slightly underestimates the timing dispersion and the number of event dele-
tions due to the ambiguity inherent in event synchrony (cf. Fig. 4). Moreover,
similarly as in the one-dimensional case, it is critical to choose an appropriate
set of initial values δ̂

(0)
t , δ̂

(0)
f , ŝ

(0)
t , and ŝ

(0)
f .

8 Application: Diagnosis of MCI from EEG

Several clinical studies have shown that the EEG of Alzheimer’s disease (AD)
patients is generally less coherent than of age-matched control subjects; this is
also the case for patients suffering from mild cognitive impairment (see (Jeong,
2004) for a review). In this section, we apply SES to detect subtle perturbations
in EEG synchrony of MCI patients.

First we describe the EEG data at hand (Section 8.1), then we describe how
we preprocess the EEG, extract bump models, and apply SES (Section 8.2);
at last, we present our results (Section 8.3).

8.1 EEG Data

The EEG data used here have been analyzed in previous studies concerning
early diagnosis of Alzheimer’s disease (AD) (Chapman et al., 2007; Cichocki
et al., 2005; Hogan et al., 2003; Musha et al., 2002; Vialatte et al., 2005).

Ag/AgCl electrodes (disks of diameter 8mm) were placed on 21 sites according
to 10-20 international system, with the reference electrode on the right ear-
lobe. EEG was recorded with Biotop 6R12 (NEC San-ei, Tokyo, Japan) using
analog bandpass filtering in the frequency range 0.5-250Hz at a sampling rate
of 200Hz. As in (Chapman et al., 2007; Cichocki et al., 2005; Hogan et al.,
2003; Musha et al., 2002; Vialatte et al., 2005), the signals were then digitally
band pass filtered between 4 and 30Hz using a third-order Butterworth filter.

The subjects comprised two study groups. The first consisted of a group of
25 patients who had complained of memory problems. These subjects were
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then diagnosed as suffering from mild cognitive impairment (MCI) and subse-
quently developed mild AD. The criteria for inclusion into the MCI group were
a mini mental state exam (MMSE) score = 24, though the average score in the
MCI group was 26 (SD of 1.8). The other group was a control set consisting of
56 age-matched, healthy subjects who had no memory or other cognitive im-
pairments. The average MMSE of this control group was 28.5 (SD of 1.6). The
ages of the two groups were 71.9 ± 10.2 and 71.7 ± 8.3, respectively. Finally,
it should be noted that the MMSE scores of the MCI subjects studied here
are quite high compared to a number of other studies. For example, in (Hogan
et al., 2003) the inclusion criterion was MMSE = 20, with a mean value of
23.7, while in (Chapman et al., 2007), the criterion was MMSE = 22; the
mean value was not provided. The disparity in cognitive ability between the
MCI and control subjects was thus comparatively small, making the present
classification task relatively difficult.

All recording sessions were conducted with the subjects in an awake but rest-
ing state with eyes closed; the EEG technicians prevented the subjects from
falling asleep (vigilance control). After recording, the EEG data has been care-
fully inspected. Indeed, EEG recordings are prone to a variety of artifacts, for
example due to electronic smog, head movements, and muscular activity. The
EEG data has been investigated by three EEG experts independently. EEG
segments were considered as artifact-free if all three experts agreed. Only those
subjects were retained in the analysis whose EEG recordings contained at least
20s of artifact-free data. Based on this requirement, the number of subjects in
the two groups described above was further reduced to 22 and 38, respectively.
From each subject, one EEG segment of 20s was analyzed (for each of the 21
channels).

8.2 Methods

We successively apply the following transformations to the EEG signals:

(1) wavelet transform,
(2) normalization of the wavelet coefficients,
(3) bump modeling of the normalized wavelet representation,
(4) aggregation of the resulting bump models in several regions.

Eventually, we compute the SES parameters for each pair of aggregated bump
models. In the following, we detail each of those five operations.
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8.2.1 Wavelet Transform

In order to extract the oscillatory patterns in the EEG, we apply a wavelet
transform. More specifically, we use the complex Morlet wavelets (Goupillaud
et al., 1984; Delprat et al., 1992):

ψ(t) = A exp
(

− t2/2σ2
0

)

exp(2iπf0t), (42)

where t is time, f0 is frequency, σ0 is a (positive) real parameter, and A is
a (positive) normalization factor. The Morlet wavelet (42) has proven to be
well suited for the time-frequency analysis of EEG (see (Tallon-Baudry et
al., 1996; Herrmann et al., 2005)). The product w0 = 2πf0 · σ0 determines
the number of periods in the wavelet (“wavenumber”). This number should
be sufficiently large (≥ 5), otherwise the wavelet ψ(t) does not fulfill the
admissibility condition:

∫ |ψ(t)|2
t

dt <∞, (43)

and as a result, the temporal localization of the wavelet becomes unsatisfac-
tory (Goupillaud et al., 1984; Delprat et al., 1992). In the present study, we
choose a wavenumber w0 = 7, as in the earlier studies (Tallon-Baudry et al.,
1996; Vialatte et al., 2007); this choice yields good temporal resolution in the
frequency range we consider in this study.

The wavelet transform x(t, s) of an EEG signal x(t) is obtained as:

x(t, s)
△

=
K∑

t′=1

x(t′)ψ∗
(
t′ − t

s

)

, (44)

where ψ(t) is the Morlet “mother” wavelet (42), s is a scaling factor, and
K = fsT , with fs the sampling frequency and T the length of the signal.
For the EEG data at hand, we have T = 20s and fs = 200Hz and hence
K = 4000. The scaled and shifted “daughter” wavelet in (44) has center

frequency f
△

= f0/s. In the following, we will use the notation x(t, f) instead
of x(t, s).

Next we compute the squared magnitude s(t, f) of the coefficients x(t, f):

s(t, f)
△

= |x(t, f)|2. (45)

Intuitively speaking, the time-frequency coefficients s(t, f) represents the en-
ergy of oscillatory components with frequency f at time instances t. It is
noteworthy that s(t, f) contains no information about the phase of that com-
ponent.

It is well known that EEG signals have very non-flat spectrum with an overall
1/f shape, besides state-dependent peaks at specific frequencies. Therefore,
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the map s(t, f) contains most energy at low frequencies f . If we directly apply
bump modeling to the map s(t, f), most bumps would be located in the low-
frequency range, in other words, the high-frequency range would be under-
represented. Since relevant information might be contained at high frequency,
we normalize the map s(t, f) before extracting the bump models.

We wish to point out that the time-frequency map s(t, f) may be determined
by alternative methods. For example, one may compute s(t, f) by the multi-
taper method (Thomson et al., 1982) or by filterbanks (Harris et al., 2004).
We decided to use the Morlet wavelet transformation for two reasons:

• Morlet wavelets have the optimal joint time-frequency resolution. We re-
mind the reader of the fact that the joint time-frequency resolution is
fundamentally limited by the uncertainty principle: the resolution in both
time and frequency cannot be arbitrarily high simultaneously. It is well
known that the Morlet wavelets achieve the uncertainty relation with equal-
ity (Goupillaud et al., 1984; Delprat et al., 1992; Mallat, 1999).

• EEG signals are typically highly non-stationary; the wavelet transform is
ideally suited for non-stationary signals (Mallat, 1999), in contrast to ap-
proaches based on multitapers and filterbanks.

8.2.2 Normalization

The coefficients s(t, f) are centered and normalized, resulting in the coeffi-
cients z̃(t, f):

z̃(t, f)
△

=
s(t, f) −ms(f)

σs(f)
, (46)

where ms(f) is obtained by averaging s(t, f) over the whole length of the EEG
signal:

ms(f) =
1

K

K∑

t=1

s(t, f). (47)

Likewise, σ2
s (f) is the variance of s(t, f):

σ2
s (f) =

1

K

K∑

t=1

(

s(t, f) −ms(f)
)2
. (48)

In words: the coefficients z̃(t, f) encode fluctuations from the baseline EEG
power at time t and frequency f . The normalization (46) is known as z-score
(see, e.g., (Buzsáki, 2006)), and is commonly applied (Matthew et al., 2002;
Martin et al., 2004; Ohara et al., 2004; Vialatte et al., 2007; Chen et al., 2007).
The coefficients z̃(t, f) are positive when the activity at t and f is stronger
than the baseline ms(f) and negative otherwise.

There are various approaches to apply bump modeling to the z-score z̃(t, f).
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One may first set the negative coefficients to zero, and next apply bump mod-
eling. The bump models in that case represent peak activity. Alternatively,
one may first set the positive coefficients equal to zero, reverse the sign of the
negative coefficients, and then apply bump modeling. In that case, the bump
models represent dips in the energy maps s(t, f).

In the application of diagnosing AD (see Section 8), we will follow yet another
approach. In order to extract bump models, we wish to exploit as much infor-
mation as possible from the z̃ maps. Therefore we will set only a small fraction
of the coefficients z̃(t, f) equal to zero, i.e., the 1% smallest coefficients. This
approach was also followed in (Vialatte et al., 2007), and is equivalent to the
following transformation: we shift the coefficients (46) in the positive direction
by adding a constant α, the remaining negative coefficients are set to zero:

z(t, f)
△

=
⌈

z̃(t, f) + α
⌉+

=







s(t, f) −ms(f)

σs(f)
+ α







+

, (49)

where ⌈x⌉+ = x if x ≥ 0 and ⌈x⌉+ = 0 otherwise. The constant α is chosen
such that only 1% of the coefficients remains negative after addition with α;
this corresponds to α = 3.5 in the application of diagnosing AD (see Section 8).
(In the study of (Vialatte et al., 2007), it corresponds to α = 2.) The top row
of Fig. 1 shows the normalized wavelet map z (49) of two EEG signals.

8.2.3 Bump Modeling

Next, bump models are extracted from the coefficient maps z (see Fig. 1
and (Vialatte et al., 2007)). We approximate the map z(t, f) as a sum zbump(t, f, θ)
of a “small” number of smooth basis functions or “bumps” (denoted by fbump):

z(t, f) ≈ zbump(t, f, θ)
△

=
Nb∑

k=1

fbump(t, f, θk), (50)

where θk are vectors of bump parameters and θ
△

= (θ1, θ2, . . . , θNb
). The sparse

bump approximation zbump(t, f, θ) represents regions in the time-frequency
plane where the EEG contains more power than the baseline; in other words,
it captures the most significant oscillatory activities in the EEG signal.

We choose half-ellipsoid bumps since they are well suited for our purposes (Vialatte,
2005; Vialatte et al., 2007) (see Fig. 13). Since we wish to keep the number
of bump parameters as low as possible, the principal axes of the half ellip-
soid bumps are restricted to be parallel to the time-frequency axes. As a
result, each bump is described by five parameters (see Fig. 13(a)): the coor-
dinates of its center (i.e., time tk and frequency fk), its amplitude wk > 0,
and the extension ∆tk and ∆fk in time and frequency respectively, in other
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(a) Bump parameters: time t and frequency f ,
width ∆t and height ∆f , and amplitude w.

(b) Learning the bump parameters by minimiz-
ing the quadratic cost function (51); Top (left
and right): a given patch of the time-frequency
map. Bottom left: initial bump; Bottom right:
bump obtained after adaptation.

Fig. 13. Half ellipsoid bump.

words, θk = (tk, fk, wk,∆tk,∆fk). More precisely, the ellipsoid bump function
fbump(t, f, θk) is defined as:

fbump(t, f, θk) =







wk

√

1 − κ(t, f, θk) for 0 ≤ κ(t, f, θk) ≤ 1

0 for κ(t, f, θk) > 1,
(51)

where

κ(t, f, θk) =
(t− tk)

2

(∆tk)2
+

(f − fk)
2

(∆fk)2
. (52)

For the EEG data described in Section 8.1, the number of bumps Nb (cf. (50))
is typically between 50 and 100, and therefore, zbump(t, f, θ) is fully specified by
a few hundred parameters. On the other hand, the time-frequency map z(t, f)
consists of between 104 and 105 coefficients; the bump model zbump(t, f, θ) is
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thus a sparse (but approximate) representation of z(t, f).

The bump model zbump(t, f, θ) is extracted from z(t, f) by the following algo-
rithm (Vialatte, 2005; Vialatte et al., 2007):

(1) Define appropriate boundaries for the map z(t, f) in order to avoid finite-
size effects.

(2) Partition the map z(t, f) into small zones. The size of these zones depends
on the time-frequency ratio of the wavelets, and are optimized to model
oscillatory activities lasting 4 to 5 oscillation periods. Larger oscillatory
patterns are modeled by multiple bumps.

(3) Find the zone Z that contains the most energy.
(4) Adapt a bump to that zone; the bump parameters are determined by min-

imizing the quadratic cost function (see Fig. 13(b)):

E(θk)
△

=
∑

t,f∈Z

(

z(t, f) − fbump(t, f, θk)
)2
. (53)

Next withdraw the bump from the original map.
(5) The fraction of total intensity contained in that bump is computed:

F =

∑

t,f∈Z fbump(t, f, θk)
∑

t,f∈Z z(t, f)
. (54)

If F < G for three consecutive bumps (and hence those bumps contain only
a small fraction of the energy of map z(t, f)), stop modeling and proceed
to (6), otherwise iterate (3).

(6) After all signals have been modeled, define a threshold T ≥ G, and remove
the bumps for which F < T . This allows us to trade off the information
loss and modeling of background noise: when too few bumps are generated,
information about the oscillatory activity of the brain is lost. On the other
hand, if too many bumps are generated, the bump model also contains low-
amplitude oscillatory components; since the measurement process typically
introduces a substantial amount of noise, it is likely that the low-amplitude
oscillatory components do not stem from organized brain oscillations but
are instead due measurement noise. By adjusting the threshold T , we try
to find an appropriate number of bumps.

In the present application, we used a threshold G = 0.05. With this threshold,
each bump model contains many bumps. Some of those bumps may actu-
ally model background noise. Therefore, we further pruned the bump models
(cf. Step 6). We tested various values of the threshold T ∈ [0.2, 0.25]; as we will
show, the results depend on the specific choice of T : the optimal separation
between MCI and age-matched control subjects is obtained for T = 0.22, the
separation gradually diminishes for increasing and decreasing values of T . We
refer to (Vialatte, 2005; Vialatte et al., 2007) for more information on bump
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Fig. 14. The 21 electrodes used for EEG recording, distributed according to the
10–20 international placement system (Nunez et al., 2006). The clustering into NR

= 5 zones is indicated by the colors and dashed lines (1 = frontal, 2 = left temporal,
3 = central, 4 = right temporal and 5 = occipital).

modeling. In particular, we used the same choice of boundaries (Step 1) and
partitions (Step 2) as in those references.

Eventually, we obtain 21 bump models, i.e., one per EEG channel. In the
following, we describe how those models are further processed.

8.2.4 Aggregation

As a next step, we group the 21 electrodes into a small number NR of regions,
as illustrated in Fig. 14 for NR = 5; we will report results for NR = 3, 5, and
7. From the 21 bump models obtained by sparsification (cf. Section 8.2.3), we
extract a single bump model for each of the zones by means of the aggregation
algorithm described in (Vialatte et al., 2007).

8.2.5 Stochastic Event Synchrony

Aggregation vastly reduces the computational complexity: instead of com-
puting the SES parameters between all possible pairs of 21 electrodes (210 in
total), we compute those parameters for all pairs of regions, i.e., NR(NR−1)/2
pairs in total. In addition, in order to obtain measures for average synchrony,
we average the SES parameters over all region pairs, resulting in one set of
average SES parameters per subject. It is noteworthy that in this setting, the
SES parameters quantify large-scale synchrony, since each region spans several
tens of millimeters. In the following, we will only consider ρ and st, since those

36



two parameters are the most relevant.

We choose the parameters of the SES algorithm as follows. Since we are deal-
ing with spontaneous EEG, it is unlikely that the EEG signals from certain
channels are delayed w.r.t. other channels; moreover, systematic frequency off-
sets are unrealistic. Therefore, we choose the initialization δ̂

(0)
t = 0 = δ̂

(0)
f . We

used the parameter settings ŝ
(0)
t = s0,t = 0.15, 0.175, . . . , 0.25 and ŝ

(0)
f = s0,f =

0.025, 0.050, . . . , 0.15. We will show results for all those parameter values. The
parameters νt and νf are set equal to 100, which corresponds to priors for st

and sf that have a sufficiently wide support (cf. Fig. 6). We have observed
that smaller values of νt and νf are not satisfactory (e.g., νt = 50 = νf ): the
prior takes non-negligible values for large values of st and sf , which leads to
prohibitively large and unrealistic offsets in time and frequency. Larger values
of νt and νf are not satisfactory either, since the priors for st and sf then
become too informative and would strongly bias the parameter estimates.

8.3 Results

The main results are summarized in Fig. 15 and 16; they contain p-values
obtained by the Mann-Whitney test for the parameters ρ and st respec-
tively. This test indicates whether the parameters take different values for
the two subject populations. More precisely, low p-values indicate large dif-
ference in the medians of the two populations. The p-values are shown for
ŝ
(0)
t = s0,t = 0.15, 0.175, . . . , 0.25, ŝ

(0)
f = s0,f = 0.025, 0.050, . . . , 0.15, β =

0.01, 0.001, 0.0001, T = 0.2, 0.21, . . . , 0.25, and the number of zones NR = 3,
5, and 7, with νt = 100 = νf .

The lowest p-values for ρ are obtained for T = 0.22 andNR = 5 (see Fig. 19(e)).
In particular, the smallest value is p = 1.2 · 10−4, which occurs for β = 0.001,
ŝ
(0)
t = s0,t = 0.225, and ŝ

(0)
f = s0,f = 0.05.

It is interesting that the results depend on T (cf. Section 8.2.3). That param-
eter allows us to balance the information loss and modeling of background
noise: when too few bumps are generated, information about the oscillatory
activity of the brain is lost. On the other hand, if too many bumps are gen-
erated, the bump model also contains low-amplitude oscillatory components.
The p-values are the lowest for T = 0.22, and become gradually larger as T
decreases from T = 0.22 to 0.2 and as T increases from T = 0.22 to 0.25.
One explanation could be that the number of bumps in each bump model is
significantly smaller for MCI patients than in control subjects, with the max-
imum difference at T = 0.22; if the bump models of MCI patients contained
fewer bumps, it would be intrinsically harder to align those models. However,
as Fig. 17 shows, this is not the case: On average, the bump models of MCI
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patients contain fewer bumps than the models of control subjects, but the dif-
ference is only weakly significant at best. Moreover, the largest difference does
not consistently occur at T = 0.22. In other words, the difference in number
of bumps between both subject populations cannot explain the dependency
of the p-values on T .

This seems to suggest an alternative explanation: at T = 0.22, the optimal
trade off between information loss and modeling of background noise occurs.
At lower values of T , the bump models contain more background noise, i.e.,
components that are unrelated to oscillatory events in the brain signals, and
therefore, the statistical differences between both populations decrease. At
higher values of T , the models capture fewer oscillatory events in the brain
signals, and therefore, important information to distinguish both populations
is discarded; the estimated parameters become less reliable.

From Fig. 15, we can conclude that the statistical differences in ρ are highly
significant, especially for T = 0.22 and NR = 5: There is a significantly higher
degree of non-correlated activity in MCI patients, more specifically, a high
number of non-coincident, non-synchronous oscillatory events. Interestingly,
we did not observe a significant effect on the timing jitter st of the coincident
events (see Fig. 16): very few p-values for st are smaller than 0.01, which
suggests there are no significant differences in st. In other words, MCI seems to
be associated with a significant increase of non-coincident background activity,
while the coincident activity remains well synchronized. For the sake of clarity,
Fig. 18 shows boxplots for ρ and st, for the parameter setting that leads to the
lowest p-values for ρ, i.e., T = 0.22, NR = 5, β = 0.001, ŝ

(0)
t = s0,t = 0.225,

and ŝ
(0)
f = s0,f = 0.05.

We now discuss how the p-values for ρ depend on ŝ
(0)
t = s0,t and ŝ

(0)
f = s0,f .

Fig. 19 shows those p-values for ŝ
(0)
t = s0,t = 0.025, 0.050, . . . , 0.25, ŝ

(0)
f =

s0,f = 0.025, 0.050, . . . , 0.15 β = 0.01, 0.001, 0.0001, with T = 0.22, NR = 5,
and νt = 100 = νf . Note that, in order not to clutter the figures, we only show

results for ŝ
(0)
t = s0,t = 0.15, 0.175, . . . , 0.25 in Fig. 15 and 16; Fig. 19 shows

in addition results for ŝ
(0)
t = s0,t = 0.025, 0.050, . . . , 0.125.

When both ŝ
(0)
t = s0,t and ŝ

(0)
f = s0,f are smaller or equal 0.75, the fraction of

non-matched events is usually about 70-80% (not shown here), and pairs of
events that are close in time and frequency are not always matched. In other
words, the obtained solutions are not satisfactory for those values of ŝ

(0)
t = s0,t

and ŝ
(0)
f = s0,f .

The smallest p-values occur typically for ŝ
(0)
t > 0.15 and ŝ

(0)
f < 0.1. This is

in agreement with our expectations: As we argued in Section 3, we expect
bumps to appear at about the same frequency in both time-frequency maps,
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ŝ
(0)
f

(g) β = 0.01, 7 zones

0.05 0.1 0.15
10

−4

10
−3

10
−2

10
−1

10
0

 

 

T=0.2
T=0.21
T=0.22
T=0.23
T=0.24
T=0.25

p
-v

al
u
e

ŝ
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Fig. 15. p-values obtained by the Mann-Whitney test for the parameter ρ for

ŝ
(0)
t = s0,t = 0.15, 0.175, . . . , 0.25, ŝ

(0)
f = s0,f = 0.025, 0.050, . . . , 0.15, β = 0.01,

0.001, 0.0001, T = 0.2, 0.21, . . . , 0.25 and the number of zones NR = 3, 5, and 7,

with νt = 100 = νf . The p-values seem to vary little with s
(0)
t , s

(0)
f and β, but are

more dependent on T and the number of zones. The lowest p-values are obtained for
T = 0.22 and 5 zones; the corresponding statistical differences are highly significant.

since frequency shifts are hard to justify from a physiological perspective,
whereas timing jitter arises quite naturally.

We verified that the SES measures ρ and st are not correlated with other
synchrony measures, e.g., Pearson correlation coefficient, magnitude and phase
coherence, phase synchrony etc. (Pearson r, p > 0.10; see (Dauwels et al.,
2008) for more details). In contrast to the classical measures, SES quantifies
the synchrony of oscillatory events instead of more conventional amplitude
or phase synchrony, therefore, it provides complementary information about
EEG synchrony.
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Fig. 16. p-values obtained by the Mann-Whitney test for the parameter st for

ŝ
(0)
t = s0,t = 0.15, 0.175, . . . , 0.25, ŝ

(0)
f = s0,f = 0.025, 0.050, . . . , 0.15, β = 0.01,

0.001, 0.0001, T = 0.2, 0.21, . . . , 0.25 and the number of zones NR = 3, 5, and 7,
with νt = 100 = νf . Very few p-values are smaller than 0.01, which suggests there
are no significant differences in st.

We applied a variety of classical synchrony measures to the same EEG data
set (Dauwels et al., 2008). Most measures yield (weakly) significantly different
values for the MCI and control subjects, some differences are highly significant;
the most significant results were obtained with the the full-frequency direct
transfer function (ffDTF), which is a Granger measure (Pereda et al., 2005),
resulting in a p-value of about 10−3 (Mann-Whitney test). We combined ρ with
ffDTF as features to distinguish MCI from control subjects (see Fig.20). We
used the parameter setting of the SES algorithm that leads to the smallest
p-value for ρ (p = 1.2 · 10−4); we verified that all parameter settings with
T = 0.22 and NR = 5 yields about the same classification results. About 85%
of the subjects are correctly classified, which is a promising result. However,
it is too weak to allow us to predict AD reliably. To this end, we would need

40



0.2 0.21 0.22 0.23 0.24
20

40

60

80

100

120

140

 

 

N
R

=3 (MLD)

N
R

=5 (MLD)

N
R

=7 (MLD)

N
R

=3 (CTR)

N
R

=5 (CTR)

N
R

=7 (CTR)

av
er

ag
e

le
n
gt

h

T

(a) Average number of bumps

0.2 0.21 0.22 0.23 0.24 0.25
10

−3

10
−2

10
−1

10
0

 

 

N
R

=3

N
R

=5

N
R

=7

p
-v

al
u
e

T

(b) p-values

Fig. 17. Average number of bumps in each bump model, for MCI and control
subjects; average number (left) and p-values obtained by the Mann-Whitney test
(right).
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Fig. 18. Box plots of st and ρ , for MCI and control subjects, with T = 0.22, NR =

5, β = 0.001, ŝ
(0)
t = s0,t = 0.225, and ŝ

(0)
f = s0,f = 0.05. Interestingly, the parameter

ρ leads to highly significant differences (p = 0.00012), in contrast to the parameter
st (p = 0.19).

to combine those two synchrony measures with complementary features, for
example, derived from the slowing effect of MCI on EEG, or perhaps from
different modalities such as PET, MRI, or biochemical indicators. We wish
to point out, however, that in the data set at hand, patients did not carry
out any specific task. In addition, we considered recordings of 20s, which are
rather short. It is plausible that the sensitivity of EEG synchrony could be
further improved by increasing the length of the recordings and by recording
the EEG before, while, and after patients carry out specific tasks, e.g., working
memory tasks. As such, the classifier displayed in Fig. 20 might be applied to
screen a population for MCI, since it only requires an EEG recording system.
The latter is a relatively simple and low-cost technology, at present available
in most hospitals.

We tried to verify whether the small p-value of ρ is due to a decrease in
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Fig. 19. p-values (Mann-Whitney test) for the parameter ρ for

ŝ
(0)
t = s0,t = 0.025, 0.050, . . . , 0.25, ŝ

(0)
f = s0,f = 0.025, 0.050, . . . , 0.15 β =

0.01, 0.001, 0.0001, with T = 0.22, NR = 5, and νt = 100 = νf .

coincident oscillatory events or whether it can be attributed to an effect not
related to synchrony or perhaps to an artifact. To this end, we generated and
investigated surrogate data. From a given bump model, we obtain a surrogate
bump model by shuffling the bumps over time: the center tk of the bumps is
chosen randomly, more precisely, it is drawn uniformly over the support of the
bump model, the other bump parameters are kept fixed. We created 1000 such
bump models for each subject, and obtained as a result 1000 surrogate EEG
data sets. The distribution of the p-values of ρ for those 1000 surrogates is
shown in Fig. 21. The p-value of ρ for the actual EEG data set (p = 0.00012)
is indicated by a cross. All the surrogates yielded p-values larger than 0.00012.
We interpret this result as follows. If the p-values of the surrogate data were
on average about 0.00012, we would be able to conclude that synchrony alone
cannot explain the observed significant decrease in ρ. Since the p-values of the
surrogates are on average much larger than 0.00012, it is less likely that other
effects besides decrease of coincident neural activity result in the lower ρ in
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Fig. 20. Combining ρ with ffDTF as features to distinguish MCI from age-matched
control subjects. Note that ffDTF is a similarity measure whereas ρ is a dissimilarity
measure. The (ffDTF, ρ) pairs of the MCI and control subjects tend towards the left
top corner and bottom right corner respectively. The smooth curve (solid) yields a
classification rate of 85%.
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Fig. 21. Distribution of the p-value of parameter ρ for 1000 surrogate EEG data
sets. The p-value of ρ for the actual EEG data set (p = 0.00012) is indicated by a
cross. All surrogates yielded p-values larger than 0.00012.

MCI patients.

We analyzed the convergence of the proposed inference algorithm (cf. Table 2).
A histogram of the number of iterations (Step 1 and 2 in Table 2) required
for convergence is shown in Fig. 22, computed over all subjects, all pairs of
regions, and all parameter settings. The algorithm converged after at most 23
iterations, and on average, after about four iterations. We allowed a maximum
number of 50 iterations, and therefore, Fig. 22 indicates that the algorithm
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Fig. 22. Histogram of the number of iterations (Step 1 and 2 in Table 2) required
for convergence, computed over all subjects and all pairs of regions. The algorithm
converged after at most 23 iterations, and on average, after about four iterations.
We allowed a maximum number of 50 iterations, and the histogram shows that the
algorithm always converged for the EEG data set at hand.

always converged for the EEG data set at hand, as suggested by the theory of
Section 5.

Besides the algorithm of Table 2, we also implemented an algorithm in which
the alignment (24) is carried out by a linear programming relaxation instead
of the max-product algorithm. Since that algorithm is more complicated, we
will not describe it here. We observed that both algorithms always converged
to the same results. Moreover, since the max-product algorithm always con-
verged in our experiments, we can deduce that the optimal solution of the
linear programming relaxation of (24) was every time unique (Bayati et al.,
2005; Huang et al., 2007; Bayati et al., 2007; Sanghavi, 2007a,b). Since it is
well-known that the linear programming relaxation is tight for bipartite max-
weight matching (Gerards, 1995; Pulleyblank, 1995), we can conclude that in
our experiments, both the max-product algorithm and linear programming
relaxation of (24) resulted in the unique optimal alignment (24).

9 Conclusions

We have presented an alternative method to quantify the similarity of two
time series, referred to as stochastic event synchrony (SES). As a first step, one
extracts events from both time series, resulting in two point processes. The
events in those point processes are then aligned. The better the alignment,
the more similar the original time series are considered to be. In this paper
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(Part II), we focussed on multi-dimensional point processes.

Through the analysis of surrogate data, we verified that also in the multi-
dimensional case, SES can distinguish timing dispersion from event reliability.
However, it typically underestimates the timing dispersion and overestimates
event reliability; this is due to the ambiguous nature of the synchrony of point
processes. The bias tends to be smaller for multi-dimensional point processes
than for one-dimensional point processes.

Also in the multi-dimensional case, it is crucial to extract suitable events from
the given time series. Only if those events are characteristic for the time series,
SES may yield meaningful results. As we have shown, for spontaneous EEG
signals, it is natural to consider oscillatory events from the time-frequency
representation; in particular, we considered bump models extracted from time-
frequency maps of the EEG. However, depending on the nature of the EEG,
there might be interesting alternatives, for example based on matching pursuit
or chirplets.

Since the proposed similarity measure does not take the entire time series into
account but focusses exclusively on certain events, it provides complementary
information about synchrony. Therefore, we believe that it may prove to be
useful to blend our similarity measure with classical measures such as the
Pearson correlation coefficient, Granger causality, or phase synchrony indices.
We have shown that such combined approach yields interesting results for the
concrete application of diagnosing MCI from EEG: we computed ρ, the frac-
tion of non-matched oscillatory events, and full-frequency directed transfer
function (ffDTF) from spontaneous EEG and used those two (dis)similarity
measures as features to distinguish MCI from control subjects, resulting in a
classification rate of about 85%. Moreover, we observed that there are signifi-
cantly more non-matched oscillatory events in the EEG of MCI subjects than
in control subjects. The timing jitter st of the matched oscillatory events,
however, is not different in the two subject groups. In future work, we will
analyze additional data sets, and incorporate other modalities such as fMRI
and DTI into the analysis.

We wish to underline that the SES measures proposed in this paper are only
applicable to pairs of signals. However, extensions to an arbitrary number of
signals are feasible. Moreover, in the present study, the SES parameters are
assumed to be constant; SES may be extended to time-varying parameters.
Such extensions will be the subject of future reports.

At last, we wish to outline another potential extension. In the generative pro-
cess of SES, the events of the hidden point process are sampled independently
and uniformly in the space at hand. However, in some applications, those
events may naturally occur in clusters. More generally, the events may be sta-
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tistically dependent. For example, it has been shown that specific frequency
bands in EEG are sometimes coupled. Such couplings lead to correlations
between the bumps in time-frequency domain. Our current analysis ignores
such correlations. By taken those dependencies into account, we may be able
to further improve our classification results; moreover, it may lead to further
insights about MCI and AD.
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A Appendix: Factor Graphs

In this appendix, we provide some basic information on graphical models,
in particular, factor graphs. We will closely follow (Loeliger, 2004; Loeliger
et al., 2007). Graphical models are graphical representations of multivari-
ate functions. Examples of graphical models are Markov random fields (or
“Markov networks”), Bayesian networks (or “belief networks”), and factor
graphs (Loeliger, 2004; Jordan, 1999; Loeliger et al., 2007). We use factor
graphs in this paper, more specifically, Forney-style factor graph or “normal”
graphs, since they are more flexible than other types of graphical models;
moreover, the sum-product and max-product algorithm can be formulated
most easily in the factor graph notation (see (Loeliger, 2004) for a more de-
tailed argumentation).

As already mentioned before, graphical models (and factor graphs in particu-
lar) represent functions. Let us have a look at some examples.

Example A.1 (Factor graph of a function without structure)
The factor graph of the function f(x1, x2, x3) is shown in Fig. A.1 (left): edges
represent variables, and nodes represent factors. An edge is connected to a node
if and only if the corresponding variable is an argument of the corresponding
function. �

X1

X2

X3
f

X1 X2 X3
fBfA

Fig. A.1. Factor graph of function without structure, i.e., f(x1, x2, x3) (left) and a

function with structure, i.e., f(x1, x2, x3)
△

= fA(x1, x2)fB(x2, x3) (right).

The concept of factor graphs becomes interesting as soon as the function has
structure, i.e., when it factors.

Example A.2 (Factor graph of a function with structure)

Let us assume that the function f(x1, x2, x3) of Example A.1 factors as f(x1, x2, x3)
△

=
fA(x1, x2)fB(x2, x3); the factor graph of Fig. A.1 (right) represents this fac-
torization. We call f the global function and fA and fB local functions. �

Example A.3 The (global) function

f(x1, x2, x3, x4, x5, x6)
△

= fA(x1, x2)fB(x3, x4)fC(x2, x4, x5)fD(x5, x6)
(A.1)

is represented by the factor graph in Fig. A.2 �
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Fig. A.2. An example factor graph, representing the function (A.1). Each node cor-
responds to a factor in that function, i.e., fA, fB, fC , and fD, each edge corresponds
to a variable, i.e., X1, X2, . . . , X6.

More formally, a Forney-style factor graph (FFG) is defined as follows:

• Factor graph: An FFG represents a function f and consists of nodes and
edges. We assume that f can be written as a product of factors.

• Global functions: The function f is called the global function.
• Nodes/local functions: There is a node for every factor, also called local

function.
• Edges/variables: There is an edge or half-edge for every variable.
• Connections: An edge (or half-edge) representing some variable X is con-

nected to a node representing some factor f if and only if f is a function of
X.

• Configuration: A configuration is a particular assignment of values to all
variables. We use capital letters for unknown variables and small letters for
particular values. This imitates the notation used in probability theory to
denote chance/random variables and realizations thereof.

• Configuration space: The configuration space Ω is the set of all configura-
tions: it is the domain of the global function f . One may regard the variables
as functions of the configuration ω, just as we would with random/chance
variables.

• Valid configuration: A configuration ω ∈ Ω will be called valid if f(ω) 6=
0.

Implicit in the previous definition is the assumption that no more than two
edges are connected to one node. This restriction is easily circumvented by
introducing variable replication nodes (also referred to as “equality constraint
nodes”). An equality constraint node represents the factorization δ(x−x′)δ(x′−
x′′), and is depicted in Fig. A.4 (left). It enforces the equality of the variables
X,X ′, and X ′′. The (single) equality constraint node generates two replicas
of X, i.e., X ′ and X ′′. If more replicas are required, one can concatenate single
nodes as shown in Fig. A.4 (middle); combining those single nodes leads to a
compound equality constraint node (see Fig. A.4 (right)).
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X ′

X ′′

X ′′′

Fig. A.4. Equality constraint node used for variable replication. (left) single node;
(right) compound node; (middle) the compound node as concatenation of single
nodes.

B Appendix: Summary Propagation Algorithm

This appendix aims at giving a brief review of the summary-propagation al-
gorithm on a generic level (also here we will closely follow (Loeliger, 2004;
Loeliger et al., 2007)). One of the most important operations that can be per-
formed on factor graphs is marginalization, i.e., the computation of marginals
of probability functions. Marginalization lies at the heart of many algorithms
in signal processing, coding and machine learning. As we will show, comput-
ing marginals amounts to passing messages (“summaries”) along the edges
in the factor graph of the system at hand. We will now describe this generic
message-passing algorithm, called the sum(mary)-product algorithm (SPA).

B.1 Summary Propagation on Factor Trees

Example B.1 (Marginalization of a factored function)
Let us consider again the global function f(x1, x2, x3, x4, x5, x6) of Example A.3.
Suppose we are interested in the marginal function

f(x5)
△

=
∑

x1,x2,x3,x4,x6

f(x1, x2, x3, x4, x5, x6). (B.1)

With the factorization (A.1), we have:

f(x5) =
∑

x1,x2,x3,x4,x6

fA(x1, x2) · fB(x3, x4) · fC(x2, x4, x5) · fD(x5, x6)

=
∑

x2,x4

fC(x2, x4, x5)
(∑

x1

fA(x1, x2)
)

︸ ︷︷ ︸

µfA→x2(x2)

·
(∑

x3

fB(x3, x4)
)

︸ ︷︷ ︸

µfB→x4(x4)
︸ ︷︷ ︸

µfC→x5(x5)

·
(∑

x6

fD(x5, x6)
)

︸ ︷︷ ︸

µfD→x5(x5)

. (B.2)

�
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Fig. B.1. Summary-propagation for computing f(x5). The arrows correspond to
intermediate results, referred to as “messages” (see (B.2)).

X1 X2

X3

X4

X5 X6
fA
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fC fD

Fig. B.2. Summary-propagation for computing f(x2). Note that we have already
computed the messages µfA→x2(x2), µfB→x4(x4), and µfD→x5(x5) for comput-
ing f(x5) (see Fig. B.1); they can be “re-used” for computing f(x2).

The idea behind (B.2) is to “push” the summations as much right as possible.
For example, when summing w.r.t. X6, we can push the summation sign to the
right side of every factor except fD(x5, x6), since this factor depends on X6.
As a result, instead of carrying out a high-dimensional sum, it suffices to carry
out simpler ones (one- and two-dimensional in our example). The intermediate
terms µfj→xi

(xi) are functions of Xi. The domain of such a functions is the
alphabet of Xi. Their meaning becomes obvious when looking at Fig. B.1.

The intermediate results can be interpreted as “messages” flowing along the
edges of the graph. For example, the message µfA→x2(x2), which is the sum

∑

x1
fA(x1, x2),

can be interpreted as a message leaving node fA along edgeX2. If both µfA→x2(x2)
and µfB→x4(x4) are available, the message µfC→x5(x5) can be computed as the
output message of node fC towards edge X5. The final result of (B.2) is

f(x5) = µfC→x5(x5) · µfD→x5(x5). (B.3)

It is the product of the two messages along the same edge.

Each message can be regarded as a “summary” of what lies “behind” it, as
illustrated by the boxes in Fig. B.1. Computing a message means “closing” a
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Fig. B.3. The SPA computes two messages along each edge. Those messages are
required for calculating the marginal functions f(x1), f(x2), f(x3), f(x4), f(x5)
and f(x6). The circled numbers indicate the order of the message computations.

X1

XN

f
Y...

Fig. B.4. Message along a generic edge.

f
Y

Fig. B.5. Message out of a leaf node.

part of the graph (“box”). The details inside such a box are “summed out”,
only a summary is propagated (hence the name summary-propagation). In
the first step, the dark shaded areas in Fig. B.1 are summarized (resulting
in µfA→x2(x2) and µfD→x5(x5)). Afterwards, the lighter shaded box is closed
(amounting to µfC→x2(x2)), until we arrive at (B.3).

Half-edges (such as X1) do not carry a message towards the connected node;
alternatively, the edge may be thought of as carrying a message representing
a neutral factor 1. With this in mind, we notice that every message (i.e., every
intermediate result) of (B.2) is computed in the same way. Consider the generic
node depicted in Fig. B.4 with messages arriving along its edges X1, . . . , XN .
The message towards edge e is computed by the following rule.

Sum-product rule:

µf→y(y)
△

=
∑

x1,...,xN

f(y, x1, . . . , xN)µx1→f(x1) · · ·µxN→f(xN ). (B.4)

In words: The message out of a node f along the edge Y is the product of the
function f and all messages towards f along all other edges, summarized over
all variables except Y . This is the sum-product rule. In general, messages are
computed out of any edge, there is no preferential direction. The message out
of a leaf node f along edge Y is the function f itself, as illustrated in Fig. B.5.
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Example B.2 (Maximization of a factored function)
Let us consider again the global function f(x1, x2, x3, x4, x5, x6) of Example B.1.
Assume we are now interested in the function (“max-marginal”)

f(x5)
△

= max
x1,x2,x3,x4,x6

f(x1, x2, x3, x4, x5, x6). (B.5)

With the factorization (A.1), we have:

f(x5) = max
x1,x2,x3,x4,x6

fA(x1, x2) · fB(x3, x4) · fC(x2, x4, x5) · fD(x5, x6)

= max
x2,x4

fC(x2, x4, x5)
(

max
x1

fA(x1, x2)
)

︸ ︷︷ ︸

µfA→x2(x2)

·
(

max
x3

fB(x3, x4)
)

︸ ︷︷ ︸

µfB→x4(x4)
︸ ︷︷ ︸

µfC→x5(x5)

·
(

max
x6

fD(x5, x6)
)

︸ ︷︷ ︸

µfD→x5(x5)

. (B.6)

�

It is noteworthy that every message of (B.6) is computed according to the
same rule.

Max-product rule:

µf→y(y)
△

= max
x1,...,xN

f(y, x1, . . . , xN)µx1→f(x1) · · ·µxN→f(xN ) (B.7)

The sum-product and max-product rules can be considered as instances of the
following single rule.

Summary-product rule: The message µf→y(y) out of a factor
node f(y, . . . ) along the edge Y is the product of f(y, . . . ) and all
messages towards f along all edges except Y , summarized over all
variables except Y .

The following example shows how several marginals can be obtained simulta-
neously in an efficient manner.

Example B.3 (Recycling messages)
Suppose we are also interested in the max-marginal function f(x2) of the global
function f(x1, x2, x3, x4, x5, x6) of Example B.1:

f(x2)
△

= max
x1,x3,x4,x5,x6

f(x1, x3, x4, x5, x6).
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This max-marginal can be computed by the max-product algorithm depicted
in Fig. B.2. Note that we have already computed the messages µfA→x2(x2),
µfB→x4(x4), and µfD→x5(x5) in (B.6); they can be “re-used” for computing f(x2).
Eventually, f(x2) is obtained as

f(x2) = µfA→x2(x2)µfC→x2(x2). (B.8)

�

From this last example, we learn that the two messages associated to an edge
are for the computation of each (max-)marginal the same. It is therefore suf-
ficient to compute each message once. The (max-)marginal f(y) of a certain
variable Y is the product of the two messages on the corresponding edge, such
as (B.3) and (B.8). In general, it is

f(y) = µfA→y(y) · µfB→y(y) (B.9)

where fA and fB are the two nodes attached to edge Y . For half edges, the
message coming from the open end carries a neutral factor “1”. Therefore,
the message from the node towards the edge is already the marginal of the
corresponding variable.

In its general form, the summary-propagation algorithm (SPA) computes two
messages on every edge. For factor graphs without loops (factor trees), the
marginals can obtained in an optimal number of computations as follows. 2

One starts the message computation from the leaves and proceeds with nodes
whose input messages become available. In this way, each message is com-
puted exactly once, as illustrated in Fig. B.3. When the algorithm stops, exact
marginals, such as (B.9), are available for all variables simultaneously.

In summary:

• Marginals such as (B.5) can be computed as the product of two messages
as in (B.9).

• Such messages are summaries of the subgraph behind them.
• All messages (except those out of terminal nodes) are computed from other

messages according to the summary-product rule.

If the summaries are computed by the sum-product rule, the above algorithm
is referred to as “sum-product algorithm” or “belief propagation”. On the
other hand, if the summaries are computed according to the max-product
rule, it is known as the “max-product algorithm”.

2 The number of computations may be reduced by additional information about
the structure of the local node functions. This is the case when the factor nodes
themselves may be expressed by (non-trivial) factor trees.
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If one applies the rules (B.4) or (B.7), the values of the messages often quickly
tend to zero and the algorithm becomes instable. Therefore, it is advisable to
scale the message: instead of the message µ(.), a modified message µ̃(.)

△

= γµ(.)
is computed, where the scale factor γ may be chosen as one wishes. The final
result (B.9) will then be known up to a scaling factor, which is often not a
problem.

A message update schedule says when one has to calculate what message. For
factor trees, there is an optimal message update schedule, as we explained
previously; for cyclic factor graphs, this is not the case.

B.2 Summary Propagation on Cyclic Factor Graphs

The situation becomes quite different when the graph has cycles. In this case,
the summary-propagation algorithm becomes iterative: a new output message
at some node can influence the inputs of the same node through another path
in the graph. The algorithm does not amount to the exact marginal functions.
In fact, there is even no guarantee that the algorithm converges! Astonishingly,
applying the summary-product algorithm on cyclic graphs works excellently
in the context of coding and signal processing, and machine learning. In many
practical cases, the algorithm reaches a stable point and the obtained marginal
functions are satisfactory: decisions based on those marginals are often close
enough to the “optimal” decisions.

Summary-propagation on cyclic-graphs consists of the following steps

(1) First, all edges are initialized with a neutral message, i.e., a factor µ(.) = 1.
(2) All messages are then recursively updated according to some schedule. This

schedule may vary from step to step.
(3) After each step, the marginal functions are computed according to (B.9).
(4) One takes decisions based on the current marginal functions.
(5) The algorithm is halted when the available time is over or when some

stopping criterion is satisfied (e.g., when all messages varied less than some
small ε over the last iterations).

C Appendix: Derivation of the SES Inference Algorithm

In this appendix, we derive the inference algorithm for multi-variate SES,
summarized in Table 2.

The estimate θ̂(i+1) (25) is available in closed-form; indeed, it is easily verified
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that the point estimates δ̂
(i+1)
t and δ̂

(i+1)
f are the (sample) mean of the timing

and frequency offset respectively, computed over all pairs of coincident events:

δ̂
(i+1)
t

△

=
1

n(i+1)

n(i+1)
∑

k=1

t̂
′(i+1)
k − t̂

(i+1)
k

(∆t̂
(i+1)
k + ∆t̂

′(i+1)
k )2

(C.1)

δ̂
(i+1)
f

△

=
1

n(i+1)

n(i+1)
∑

k=1

f̂
′(i+1)
k − f̂

(i+1)
k

(∆f̂
(i+1)
k + ∆f̂

′(i+1)
k )2

, (C.2)

where n(i+1) is the number of coincident bump pairs in alignment ĉ(i+1), and
where we used the shorthand notation t̂

(i+1)
k = t

ĵ
(i+1)
k

, f̂
(i+1)
k = f

ĵ
(i+1)
k

, ∆t̂
(i+1)
k =

∆t
ĵ
(i+1)
k

, ∆f̂
(i+1)
k = ∆f

ĵ
(i+1)
k

, and likewise t̂′
(i+1)

k , f̂ ′
(i+1)

k , ∆t̂′
(i+1)

k , ∆f̂ ′
(i+1)

k .

The estimates ŝ
(i+1)
t and ŝ

(i+1)
f are obtained as:

ŝ
(i+1)
t =

νts0,t + n(i+1)ŝ
(i+1)
t,sample

νt + n(i+1) + 2
(C.3)

ŝ
(i+1)
f =

νfs0,f + n(i+1)ŝ
(i+1)
f,sample

νf + n(i+1) + 2
, (C.4)

where νt, νf , s0,t and s0,f are the parameters of the conjugate priors (17)
and (18), and st,sample and sf,sample are the (sample) variance of the timing and
frequency offset respectively, computed over all pairs of coincident events:

ŝ
(i+1)
t,sample

△

=
1

n(i+1)

n(i+1)
∑

k=1

(t̂
′(i+1)
k − t̂

(i+1)
k − δ̂

(i+1)
t )2

(∆t̂
(i+1)
k + ∆t̂

′(i+1)
k )2

(C.5)

ŝ
(i+1)
f,sample

△

=
1

n(i+1)

n(i+1)
∑

k=1

(f̂
′(i+1)
k − f̂

(i+1)
k − δ̂

(i+1)
f )2

(∆f̂
(i+1)
k + ∆f̂

′(i+1)
k )2

. (C.6)

Now we address the update (24), i.e., finding the optimal pairwise alignment
c for given values θ̂(i) of the parameters θ. In the following, we will show
that it is equivalent to a standard problem in combinatorial optimization, i.e.,
max-weight bipartite matching (see, e.g., (Gerards, 1995; Pulleyblank, 1995;
Bayati et al., 2005, 2007; Huang et al., 2007; Sanghavi, 2007a,b)). First, let
us point out that in (22), there is a factor β for every non-coincident bump;
the total number of factors β is hence nnon-co = n + n′ − 2nco, where nco is
the number of coincident bump pairs. On the other hand, for each pair of
coincident bumps, there is a factor N (·; δt, st)N (·; δf , sf); in total there are
nco such factors. Therefore, we can rewrite (22) as:

p(e, e′, c, θ) ∝
n∏

k=1

n′

∏

k′=1

(

N
(

t′k′ − tk; δ̄t, s̄t

)

N
(

f ′
k′ − fk; δ̄f , s̄f

)

β−2
)ckk′

· I(c)p(δt)p(st)p(δf )p(sf), (C.7)
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where we omitted the factor βn+n′

since it is an irrelevant constant, and

I(c) =
n∏

k=1

(

δ
[ n′

∑

k′=1

ckk′

]

+ δ
[ n′

∑

k′=1

ckk′ − 1
])

·
n′

∏

k′=1

(

δ
[ n∑

k=1

ckk′

]

+ δ
[ n∑

k=1

ckk′ − 1
])

. (C.8)

The factor I(c) encodes the constraints (14). The maximization (24) is equiv-
alent to:

ĉ(i+1) = argmax
c

log p(e, e′, c, θ̂(i)). (C.9)

Using (C.7), we can rewrite (C.9) as:

ĉ(i+1) = argmax
c

∑

kk′

wkk′ ckk′ + log I(c) + ζ, (C.10)

where ζ is an irrelevant constant and

wkk′ = −
(

t′k′ − tk − δ̂
(i)
t

)2

2st(∆tk + ∆t′k′)2
−
(

f ′
k′ − fk − δ̂

(i)
f

)2

2sf(∆fk + ∆f ′
k′)2

− 2 log β

− 1/2 log 2πst(∆tk + ∆t′k′)2 − 1/2 log 2πsf(∆fk + ∆f ′
k′)2, (C.11)

where the weights wkk′ can be positive or negative. If weight wkk′ is negative,
then ckk′ = 0. Indeed, setting ckk′ equal to one would decrease log p(e, e′, c, θ̂(i)).
Bump pairs (ek, e

′
k′) with large weights wkk′ are likely to be coincident. The

closer the bumps (ek, e
′
k′) on the time-frequency plane, the larger their weight wkk′.

From the definition of β (9), we can also see that the weights increase as the
prior for a deletion pd decreases. Indeed, the fewer deletions, the more likely
that a bump ek is coincident with a bump e′k. In addition, the weights wkk′

grow as the concentration λ of bumps on the time-frequency plane decreases.
Indeed, if there are few bumps in each model (per square unit) and a bump
ek of e happens to be close to a bump e′k′ of e′, they are most probably a
coincident bump pair, since most likely, there are only few other bumps in e′

that are close to ek.

One can naturally associate a bipartite graph with the optimization prob-
lem (C.10). The latter is a graph whose nodes can be divided into two disjoint
sets V1 and V2 such that every edge connects a node in V1 and one in V2, i.e.,
there is no edge between two vertices in the same set. As a first step, one asso-
ciates a node to each bump in e, resulting in the set of nodes V1, and likewise,
one associates a node to each bump in e′, resulting in the set of nodes V2. Next
one draws edges between each node of V1 and V2, resulting in the bipartite
graph depicted in Fig. 1(a). At last, one assigns a weight to every edge, more
precisely, the edge between node k of V1 and node k′ of V2 has weight wkk′.
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(a) Weighted bipartite graph.
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(b) Non-perfect matching.

Fig. C.1. Bipartite max-weight matching. The weighted bipartite graph (left) is
obtained as follows: first one associates a node to each bump in e, resulting in the
set of nodes V1 (nodes at the left), and likewise, one associates a node to each
bump in e′, resulting in the set of nodes V2 (nodes at the right). Next one draws
edges between each node of V1 and V2, and associates a weight wkk′ to each edge.
Problem (C.10) is equivalent to finding the heaviest disjoint set of edges in that
weighted bipartite graph. Note that some nodes may not be connected to edges of
that subset, i.e., the matching may be non-perfect (right).

Let us now look back at problem (C.10): one maximizes a sum of weights
wkk′ subject to the constraints (14). This problem is equivalent to finding the
heaviest disjoint set of edges in the bipartite graph of Fig. 1(a). This set of
edges does not need to be connected to every node, some nodes may not be
matched. For example, in Fig. 1(b) the second node of V1 is not matched. The
latter problem is known as imperfect max-weight bipartite matching, and can
be solved in at least three different ways:

• by the Edmond-Karp (Edmonds et al., 1972) or auction algorithm (Bert-
sekas et al., 1989),

• by using the tight LP relaxation to the integer programming formulation
of bipartite max-weight matching (Gerards, 1995; Pulleyblank, 1995),

• by applying the max-product algorithm (Bayati et al., 2005, 2007; Huang
et al., 2007; Sanghavi, 2007a,b).

The Edmond-Karp (Edmonds et al., 1972) and auction algorithm (Bertsekas
et al., 1989) both result in the optimum solution of (C.10). The same holds for
the linear programming relaxation approach and the max-product algorithm
as long as the optimum solution is unique. If the latter is not unique, the
linear programming relaxation method may result in non-integer solutions
and the max-product algorithm will not converge, as shown in (Sanghavi,
2007a,b). Note that in many practical problems, the optimum matching (C.10)
is unique with probability one. This is in particular the case for the bump
models described in the above. Since the max-product algorithm is arguably
the simplest algorithm in the above list, we will in the following only describe
that algorithm.
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Before we can apply the max-product algorithm on the graph Fig. 7 in order
to find the optimal alignment (24), we first need to slightly modify that graph.
Indeed, the alignment c is computed for given θ = θ̂(i), i.e., one computes c
conditioned on θ = θ̂(i). Generally, if one performs inference conditioned on a
variable X, the edge(s) X need to be removed from the factor graph of the
statistical model at hand. Therefore, for the purpose of computing (24), one
needs to remove the θ edges (and the two bottom nodes in Fig. 7), resulting
in the factor graph depicted in Fig. 8. It is noteworthy that the N -nodes have
become leaf nodes, and that θ in gN (19) is replaced by the estimate θ̂(i).

Before applying the max-product algorithm to Fig. 8, we briefly describe it
in general terms. The max-product algorithm is an optimization procedure
that operates on a factor graph (or any other kind of graphical model) (Jor-
dan, 1999; Loeliger, 2004; Loeliger et al., 2007); local information (referred
to as “messages”) propagates along the edges in the graph, and is computed
at each node according to the generic max-product computation rule. After
convergence or after a fixed number of iterations, one combines the messages
in order to obtain decisions (Loeliger, 2004; Loeliger et al., 2007). If the graph
is cycle-free, one obtains optimal solution of the optimization problem, on
the other hand, if the graph is cyclic, the max-product algorithm may not
converge, and if it converges, the resulting decisions are not necessarily opti-
mal (Loeliger, 2004; Loeliger et al., 2007). However, for certain problems that
involve cyclic graphs, it has been shown that the max-product algorithm is
guaranteed to find the optimum solution. As we pointed out earlier, this is in
particular the case for the max weight matching problem (Bayati et al., 2005,
2007; Huang et al., 2007; Sanghavi, 2007a,b). We refer to the Appendix B for
more information on the max-product algorithm.

As mentioned in the above, the messages in the graph of Fig. 8 are iteratively
updated according to the max-product update rule, which is stated in row 1
of Table C.1 for a generic node g. We now apply that generic rule to the nodes
in Fig. 8. Let us first consider the β- and N -nodes, which are leaf nodes. The
max-product message leaving a leaf node is nothing but the node function
itself (see row 2 of Table C.1). Therefore, the messages µ↓(bk) and µ↓(b′k),
propagating downward along the edges Bk and B′

k respectively, are given by:

µ↓(bk) = gβ(bk) = βδ[bk − 1] + δ[bk] (C.12)

µ↓(b′k) = gβ(b′k) = βδ[b′k − 1] + δ[b′k], (C.13)

and similarly, the messages µ↑(ckk′), propagating upward along the edges Ckk′:

µ↑(ckk′) = gN (ckk′; θ̂(i)) (C.14)

=
(

N
(

t′k′ − tk; δ̄
(i)
t , s̄

(i)
t

)

N
(

f ′
k′ − fk; δ̄

(i)
f , s̄

(i)
f

))ckk′

, (C.15)

where δ̄
(i)
t = δ̂

(i)
t (∆tk + ∆t′k′), δ̄

(i)
f = δ̂

(i)
f (∆fk + ∆f ′

k′), s̄
(i)
t = ŝ

(i)
t (∆tk + ∆t′k′)2,
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1

...

X1

X2

Xm

Y

µ(y) ∝ maxx1,x2,...,xm g(x1, . . . , xm, y)µ(x1) . . . µ(xm)

g(x1, x2, . . . xm, y)

2 Y µ(y) ∝ g(y)

g(y)

3

=...

X1

X2

Xm

Y



µ(y = 0)

µ(y = 1)



 ∝




µ(x1 = 0)µ(x2 = 0) . . . µ(xm = 0)

µ(x1 = 1)µ(x2 = 1) . . . µ(xm = 1)





δ[x1 − x2] . . . δ[xm − y]

X1, . . . ,Xm, Y ∈ {0, 1}

4

B

Σ̄

. . .
X1 Xm




µ↓(xk = 0)

µ↓(xk = 1)



 ∝




max

(
µ↓(b=1)
µ↓(b=0) ,maxℓ 6=k

µ↑(xℓ=1)
µ↑(xℓ=0)

)

1





δ
[
b +

∑m
k=1 xk − 1

]




µ↑(b = 0)

µ↑(b = 1)



 ∝




maxk

µ↑(xk=1)
µ↑(xk=0)

1





B,X1, . . . ,Xm ∈ {0, 1}

Table C.1
Max-product computation rules for the nodes in the factor graph of Fig. 8.

and s̄
(i)
f = ŝ

(i)
f (∆fk + ∆f ′

k′)2. Note that the messages µ ↓ (bk) and µ ↓ (b′k)
never change, i.e., they do not need to be recomputed in the course of the
max-product algorithm.

We now turn to the messages at the Σ̄-nodes; row 4 of Table C.1 considers
a generic Σ̄-node. Its (generic) incident edges X1, . . . , Xm are replaced by
C1k′, . . . , Cnk′ or Ck1, . . . , Ckn′ in Fig. 8; for convenience, we now compute the
messages in terms of X1, . . . , Xm, later we will formulate them in terms of
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Ckk′ (more specifically, in (C.22) (C.23) (C.30) (C.32)). The message µ↑(b),
propagating upward along the edge B, is computed as:

µ↑(b) = max
x1,...,xm

δ
[

b+
m∑

k=1

xk − 1
]

µ↑(x1) . . . µ↑(xm) (C.16)

= µ↑(x1 = 0) . . . µ↑(xm = 0)

·
(

δ[b− 1] + δ[b] max
k
µ↑(xk = 1)/µ↑(xk = 0)

)

, (C.17)

where X1, . . . , Xm, B ∈ {0, 1} and µ↑(xk) are the messages propagating up-
ward along the edges Xk. In row 4 of Table C.1, we have written the message
µ↑(b) componentwise. The messages µ↓(xk), propagating downward along the
edges Xk, are computed similarly:

µ↓(xk) = max
b,x1,...,xk−1,xk+1...,xm

δ
[

b+
m∑

k=1

xk − 1
]

µ↓(b)µ↑(x1) . . . µ↑(xk−1)

· µ↑(xk+1) . . . µ↑(xm) (C.18)

= µ↑(b = 0)µ↑(x1 = 0) . . . µ↑(xk−1 = 0)µ↑(xk+1 = 0) . . . µ↑(xm = 0)

·
[

δ[xk − 1] + δ[xk] max
(

µ↓(b = 1)/µ↓(b = 0),

max
ℓ 6=k

µ↑(xℓ = 1)/µ↑(xℓ = 0)
)]

, (C.19)

where µ↑(b) is the message propagating upward along the edge B. The com-
ponentwise formulation of µ↓(xk) is also listed in row 4 of Table C.1.

At last, we turn to the messages computed at the equality constraint nodes
in Fig. 8. The (generic) equality constraint node is considered in row 3 of
Table C.1. The message µ(y), leaving this node along the edge Y , is computed
as follows:

µ(y) = max
x1,...,xm

δ[x1 − x2] . . . δ[xm−1 − xm]δ[xm − y]µ(x1) . . . µ(xm) (C.20)

= µ(x1 = y) . . . µ(xm = y), (C.21)

whereX1, . . . , Xm, Y ∈ {0, 1}. Since the equality constraint node is symmetric,
the other messages leaving the equality constraint node (along the edges X1,
. . . , Xm) are computed analogously.

We now use (C.12)–(C.21) to derive the update rules for the messages µ↑(bk),
µ↑(b′k), µ↓(ckk′), µ↑′(ckk′), µ↓′(ckk′), µ↑′′(ckk′), and µ↓′′(ckk′) in Fig. 8:

• the messages µ↑(bk) and µ↑(b′k) propagate upward along the edges bk and
b′k respectively, towards the β-nodes,

• the messages µ↓(ckk′) propagate downward along the edges Ckk′, leaving the
equality constraint nodes,
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• the messages µ↑ ′(ckk′) and µ↑ ′′(ckk′) propagate upward along the edges
Ckk′, towards the Σ̄-nodes connected to the edges Bk and B′

k′ respectively
(see Fig. 8, left hand side),

• the messages µ↓′(ckk′) and µ↓′′(ckk′) propagate downward along the edges
Ckk′, leaving the Σ̄-nodes connected to the edges Bk and B′

k′ respectively.

We start with the messages µ↑(bk):

µ↑(bk) = µ↑′(ck1 = 0) . . . µ↑′(ckn′ = 0)

·
(

δ[bk − 1] + δ[bk] max
k′

µ↑′(ckk′ = 1)/µ↑′(ckk′ = 0)
)

, (C.22)

where we used (C.17), and likewise:

µ↑(b′k′) = µ↑′′(c1k′ = 0) . . . µ↑′′(cnk′ = 0)

·
(

δ[b′k′ − 1] + δ[b′k′] max
k

µ↑′′(ckk′ = 1)/µ↑′′(ckk′ = 0)
)

. (C.23)

The messages µ↓(ckk′) are derived as follows:

µ↓(ckk′) = µ↓′(ckk′)µ↓′′(ckk′), (C.24)

where we used (C.21).

The messages µ↑′(ckk′) are derived as follows:

µ↑′(ckk′) ∝ µ↓′′(ckk′)µ↑(ckk′) = µ↓′′(ckk′)gN (ckk′; θ̂(i)) (C.25)

= µ↓′′(ckk′)
(

N
(

t′k′ − tk; δ̄
(i)
t , s̄

(i)
t

)

N
(

f ′
k′ − fk; δ̄

(i)
f , s̄

(i)
f

))ckk′

, (C.26)

where we used (C.15) and (C.21), and where δ̄
(i)
t = δ̂

(i)
t (∆tk + ∆t′k′), δ̄

(i)
f =

δ̂
(i)
f (∆fk+∆f ′

k′), s̄
(i)
t = ŝ

(i)
t (∆tk+∆t′k′)2, and s̄

(i)
f = ŝ

(i)
f (∆fk+∆f ′

k′)2. Similarly,
we have:

µ↑′′(ckk′) ∝ µ↓′(ckk′)µ↑(ckk′) = µ↓′(ckk′)gN (ckk′; θ̂(i)) (C.27)

= µ↓′(ckk′)
(

N
(

t′k′ − tk; δ̄
(i)
t , s̄

(i)
t

)

N
(

f ′
k′ − fk; δ̄

(i)
f , s̄

(i)
f

))ckk′

. (C.28)

The messages µ↑′(ckk′) and µ↑′′(ckk′) depend on the messages µ↓′′(ckk′) and
µ↓′(ckk′) respectively. The latter are computed as follows:

µ↓′(ckk′) ∝
(

δ[ckk′ − 1] + δ[ckk′] max
(

µ↓(bk = 1)/µ↓(bk = 0),

max
ℓ′ 6=k′

µ↑′(ckℓ′ = 1)/µ↑′(ckℓ′ = 0)
))

(C.29)

=
(

δ[ckk′ − 1] + δ[ckk′] max
(

β,

max
ℓ′ 6=k′

µ↑′(ckℓ′ = 1)/µ↑′(ckℓ′ = 0)
))

, (C.30)

62



where we used (C.12) and (C.19), and likewise

µ↓′′(ckk′) ∝
(

δ[ckk′ − 1] + δ[ckk′] max
(

µ↓(b′k = 1)/µ↓(b′k = 0),

max
ℓ 6=k

µ↑′′(cℓk′ = 1)/µ↑′′(cℓk′ = 0)
))

(C.31)

=
(

δ[ckk′ − 1] + δ[ckk′] max
(

β,

max
ℓ 6=k

µ↑′′(cℓk′ = 1)/µ↑′′(cℓk′ = 0)
))

. (C.32)

The messages µ↓′′(ckk′) and µ↓′(ckk′) depend on µ↑′(ckk′) and µ↑′′(ckk′) and vice
versa (as we pointed out earlier). Therefore, a natural way to determine all
those messages is to first initialize µ↓′(ckk′) = 1 = µ↓′′(ckk′) and then to iterate
the updates (C.26)–(C.30) until convergence. This can also be understood
from Fig. 8: since the graph is cyclic, the max-product algorithm becomes an
iterative procedure.

After convergence or after a fixed number of iterations, we compute the
marginals p(ckk′) as follows:

p(ckk′) ∝ µ↓(ckk′)µ↑(ckk′) (C.33)

= µ↓′(ckk′)µ↓′′(ckk′)

·
(

N
(

t′k′ − tk; δ̄
(i)
t , s̄

(i)
t

)

N
(

f ′
k′ − fk; δ̄

(i)
f , s̄

(i)
f

))ckk′

, (C.34)

where we used (C.15) and (C.24). The decisions ĉkk′ are then obtained as:

ĉkk′ = argmax
ckk′

p(ckk′). (C.35)
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