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Abstract

Stochastic event synchrony (SES) is a technique to quantify the similarity of pairs of

signals. In this paper (Part III), SES is extended from pairs of signals to collections

of signals. As in Part I and II, first “events” are extracted from the given time series.

Next, one tries to align events from one time series with events from the other. The

better the alignment, the more similar the collection of time series is considered to

be. As in Part II, this paper deals with multi-dimensional events. Although the basic

idea is similar to the pairwise case, the extension to collection of point processes

involves an NP-hard combinatorial problem, and therefore, it is far from trivial.
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The problem of jointly computing the alignment and SES parameters is again

cast as a statistical inference problem. This problem is solved by coordinate descent,

more specifically, by alternating the following two steps: (i) one estimates the SES

parameters from a given alignment; (ii) with the resulting estimates, one refines

the alignment. The SES parameters are computed by maximum a posteriori (MAP)

estimation (Step 1), in analogy to the pairwise case. The alignment (Step 2) is solved

as an integer program.

In order to test the robustness and reliability of the proposed multivariate SES

method, it is first applied to surrogate data. Next it is applied to detect anomalies

in EEG synchrony of Mild Cognitive Impairment (MCI) patients. The multivari-

ate approach helps to further improve the diagnosis and enables a more detailed

analysis.

Key words: coincident event, maximum a posteriori estimation, Morris-Lecar

neuron model, EEG, Alzheimer’s disease, Mild Cognitive Impairment (MCI)

1 Introduction

Quantifying the interdependence between signals or time series is an important

but challenging problem. Although it is straightforward to quantify linear de-
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pendencies, the extension to non-linear correlations is far from trivial. In this

paper, we introduce a new exemplar-based measure of statistical interdepen-

dence between an arbitrary number of spatial point processes. It can also be

applied to multidimensional signals, after they have been converted into point

processes which capture ”bursts” of activity of the signal in some appropriate

domain. As such, we attempt to measure the synchrony of the main patterns

in the data, while ignoring background activity (which can be intrinsic to the

system studied, or which can be noise).

This paper is organized as follows. In the following section, we outline the

exemplar-based statistical model for synchrony; in Section 4 we describe how

to perform inference in that model, and we characterize the underlying com-

binatorial problem. Lastly, we apply our method to detect MCI induced per-

turbations in EEG synchrony (Section 6.1). At the end of the paper, we make

some concluding remarks.

2 Principle

Suppose that we are given a pair of continuous-time signals, e.g., EEG signals

recorded from two different channels, and we wish to determine the similarity

of those two signals. As a first step, we extract point processes from those

signals, which may be achieved in various ways. As an example, we generate

point processes in time-frequency domain: first the time-frequency (“wavelet”)

transform of each signal is computed in a frequency band f ∈ [fmin, fmax].

Next those maps are approximated as a sum of half-ellipsoid basis func-

tions, referred to as “bumps” (see Fig. 3; we will provide more details on

bump modeling in Section 6.2.3). Each bump is described by five param-
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Fig. 1. Five bump models on top of each other (N = 5); the dashed boxes indicate

clusters, the dashed ellipses correspond to exemplars.

eters: time t, frequency f , width ∆t, height ∆f , and amplitude w. The re-

sulting bump models e = ((t1, f1,∆t1,∆f1, w1), . . . , (tn, fn,∆tn,∆fn, wn)) and

e′ = ((t′1, f
′
1,∆t

′
1,∆f

′
1, w

′
1), . . . , (t

′
n′, f ′

n′,∆t′n′ ,∆f ′
n′, w′

n′)) represent the most

prominent oscillatory activity in the signals at hand. This activity may corre-

spond to various physical or biological phenomena, for example:

• oscillatory events in EEG and other brain signals are believed to occur when

assemblies of neurons are spiking in synchrony (? 18),

• oscillatory events in calcium imaging data are due to oscillations of intra-

cellular calcium, which are believed to play an important role in signal

transduction between cells (see, e.g., (? )),

• oscillations and waves are of central interest in several fields beyond neu-

roscience, such as oceanography (e.g., oceanic “normal modes” caused by
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convection (? )) and seismography (e.g., free earth oscillations and earth

oscillations induced by earthquakes, hurricanes, and human activity (? )).

In the following, we will develop SES for bump models. In this setting, SES

quantifies the synchronous interplay between oscillatory patterns in two given

signals, while it ignores the other components in those signals (“background

activity”). In contrast, classical synchrony measures such as amplitude or

phase synchrony are computed from the entire signal, they make no distinc-

tion between oscillatory components and the background activity. As a conse-

quence, SES captures alternative aspects of similarity, and hence, it provides

complementary information about synchrony.

Besides bump models, SES may be applied to other sparse representations of

signals, for example:

• matching pursuit (? ) and refinements such as orthogonal matching pur-

suit (? ), stage-wise orthogonal matching pursuit (? ), tree matching pur-

suit (? ) and chaining pursuit (? ),

• chirplets (see, e.g., (? ? ? )),

• wave atoms (? ),

• curvelets (? ),

• sparsification by loopy belief propagation (? ),

• the Hilbert-Huang transform (? ),

• compressed sensing (? ? ).

Moreover, the point processes may be defined in other spaces than the time-

frequency plane, for example, they may occur in two-dimensional space (e.g.,

images), space-frequency (e.g., wavelet image coding) or space-time (e.g., movies);
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they may also be defined on more complicated manifolds, such as curves, sur-

faces, etc. Such extensions may straightforwardly be derived from the example

of bump models. We consider several extensions in Section ??.

Our extension of stochastic event synchrony to multi-dimensional point pro-

cesses (and bump models in particular) is derived from the following obser-

vation (see Fig. ??): bumps in one time-frequency map may not be present

in the other map (“non-coincident” bumps); other bumps are present in both

maps (“coincident bumps”), but appear at slightly different positions on the

maps. The black lines in Fig. ?? connect the centers of coincident bumps, and

hence, visualize the offsets between pairs of coincident bumps.

Such offsets jeopardize the suitability of classical similarity measures for time-

frequency maps. For example, let us consider the Pearson correlation coeffi-

cient r between two time-frequency maps x1(t, f) and x2(t, f):

r =

∑

t,f(x1(t, f) − x̄1)(x2(t, f) − x̄2)
√

∑

t,f (x1(t, f) − x̄1)2
√

∑

t,f(x2(t, f) − x̄2)2
, (1)

where x̄i =
∑

t,f xi(t, f) (i = 1, 2). Note that r, like many other classical

similarity measures, is based on pointwise comparisons, in other words, it

compares the activity at instance (t, f) in map x1 to the activity in x2 at the

same instance (t, f). Therefore, if the correlated activity in the maps x1(t, f)

and x2(t, f) is slightly delayed or a little shifted in frequency, the correlation

coefficient r will be small, and as a result, it may not be able to capture the

correlated activity. Our approach alleviates this shortcoming, since it explicitly

handles delays and frequency offsets.

We quantify the interdependence between two bump models by five parame-

ters, i.e., the parameters ρ, δt, and st introduced in Part I:
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Fig. 2. Generative model for e and e′. One first generates a hidden process v, next one

makes two identical copies of v and shifts those over (−δt/2,−δf /2) and (δt/2, δf /2)

respectively; the events of the resulting point process are slightly shifted (with vari-

ance (st,sf )), and some of those events are deleted (with probability pd), resulting

in e and e′.

• ρ: fraction of non-coincident bumps,

• δt: the average timing offset (delay) between coincident bumps,

• st: the variance of the timing offset between coincident bumps,

in addition to:

• δf : the average frequency offset between coincident bumps,

• sf : the variance of the frequency offset between coincident bumps.
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We determine those 5 parameters and the pairwise alignment of e and e′

by statistical inference, as in the one-dimensional case (cf. Section 3 and 4

in Part I). We start by constructing a statistical model that captures the

relation between the two bump models e and e′; that model contains the 5 SES

parameters, besides variables related to the pairwise alignment of the bumps

of e and e′. Next we perform inference in that model, resulting in estimates for

the SES parameters and the pairwise alignment. More concretely, we apply

coordinate descent, as in the case of one-dimensional point processes. In the

following section, we outline our statistical model. In Section ??, we describe

the factor graph of that model. From that factor graph, we derive the inference

algorithm for multi-dimensional SES; in Section ??, we outline that inference

algorithm. We refer to Appendix ?? for the detailed derivations. In Section ??,

we suggest various extensions of our statistical model.

3 Statistical Model

ConsiderN signals S1, . . . , SN from which we extract point processesX1, . . . , XN

by some appropriate method. Each point process Xi is a list of ni points (later

referred to as “events” or “bumps” of activity) in a given multi-dimensional

set S ⊆ R
M , i.e., Xi = {Xi,1, Xi,2, . . . , Xi,ni

} with Xi,k ∈ S for k = 1, . . . , ni

and i = 1 . . .N . As an example, consider the bump model (9) extracted from

the time-frequency maps of EEG signals (see Fig. 3). The time-frequency

(“wavelet”) transform of each EEG signal is approximated as a sum of half-

ellipsoid basis functions, referred to as “bumps” (9); each bump is described

by five parameters: time T , frequency F , width ∆T , height ∆F , and ampli-

tude W (as such, a bump is also a point in R
5). We wish to quantify to which
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extent the N resulting bump models Xi = ((Ti,1, Fi,1,∆Ti,1,∆Fi,1,Wi,1), . . . ,

(Ti,ni
, Fi,ni

,∆Ti,ni
,∆Fi,ni

,Wi,ni
)) are similar.

Intuitively speaking, N signals Xi may be considered well-synchronized if

bumps appear in all models (or almost all) simultaneously, potentially with

some small offset in time and frequency. In other words, if one overlays N

partially synchronous bump models (cf. Fig. 1 with N = 5), bumps naturally

appear in clusters that contain precisely one bump from all (or almost all)

bump models. In the example of Fig. 3, cluster 1, 5 and 6 contain bumps from

all 5 models Xi, cluster 2, 4 and 7 contains bumps from 3, 4, and 2 models

respectively, and cluster 3 consists of a single bump.

This intuitive concept of similarity may readily be translated into a generative

stochastic model. In that model, the N point processes Xi are treated as

independent noisy observations of a hidden “mother” process X̃. An observed

sequence (Xi)i=1,...,N is obtained from X̃ by the following three-step procedure:

(1) COPY: generate a copy of the mother bump model X̃,

(2) DELETION: delete some of the copied mother bumps,

(3) PERTURBATION: slightly alter the position and shape of the remaining

mother bump copies, amounting to the bump model Xi.

As a result, each sequence Xi consists of “noisy” copies of a non-empty subset

of mother bumps. The point processes Xi may be considered well-synchronized

if there only few deletions (cf. Step 2) and if the bumps of Xi are “close” to the

corresponding mother bumps (cf. Step 3). One way to determine the synchrony

of given point processes Xi is to first reconstruct the hidden mother process

X̃, and to next determine the number of deletions and the average distance
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between the point processesXi and the mother process X̃. Inferring the mother

process is a high-dimensional estimation problem, the underlying probability

distribution typically has a large number of local extrema. Therefore, we will

use an alternative procedure: we will assume that each cluster contains one

identical copy of a mother bump, the other bumps in that cluster are noisy

copies of that mother bump. The identical copy, referred to as “exemplar”,

plays the role of “center” or “representative” of each cluster (see Fig. 1). We

will assume, without loss of generality, that there is one exemplar for each

mother bump. Note that under this assumption, the mother process X̃ is

equal to the list of all exemplars. Some point processes Xi may additionally

contain noisy copies of that mother bump, but this does not need to be the

case, in other words, there might be clusters of size one, solely consisting of

an exemplar (cf. cluster 3 in Fig. 1).

The exemplar-based formulation amounts to the following inference problem:

given the point processes Xi, we need to identify the bumps that are exem-

plars and the ones that are noisy copies of some exemplar, with the constraints

that an exemplar and its noisy copies all stem from different point processes.

Obviously, this inference problem also has potentially many locally optimal

solutions, however, in contrast to the original (continuous) inference prob-

lem, we can in practice find the global optimum by integer programming (see

Section 4).

We now proceed from the example of bump models to general point processes

Xi, and describe the underlying stochastic model in more detail. The mother

process X̃ =
{

X̃1, . . . , X̃M

}

, which is the source of all points (“events”) in

X1, X2, . . .XN , is modeled as follows:
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• The number M of points in X̃ is geometrically distributed with parameter

λ vol(S):

p(M) = (1 − λ vol(S))
(

λ vol(S)
)M

, (2)

where vol(S) is the multi-dimensional volume of set S.

• Each point x̃m for m = 1, . . . ,M is uniformly distributed in S:

p(x̃|M) = vol(S)−M . (3)

With those two choices, the prior of the mother process X̃ equals:

p(x̃,M) = p(M)p(x̃|M) = (1 − λ vol(S))λM . (4)

For convenience we will in the following use the short-hand notation p(x̃) for

p(x̃,M), i.e., we will not explicitly mention the dependency on M .

From the mother process X̃, the point processes Xi for i = 1, . . . , N are

generated according to the following steps:

• For each event X̃m in the mother process X̃, one of the point processXi with

i ∈ {1, . . . , N} is chosen at random, denoted by Xi(m), and a copy of mother

event X̃m is created inXi(m); this identical copy is referred to as “exemplar”.

For convenience, we will adopt a uniform prior p
(

i(m) = i
)

= 1/N for

i = 1, . . . , N (the model can be easily generalized to any prior).

Next for each event X̃m in the mother process X̃ (with m = 1, . . . ,M), a

“noisy” copy may be created in the point processes Xj with j 6= i(m) (at

most one copy per point process Xj). More precisely, the noisy copies are

modeled as follows:

• The number Cm of copies is modeled by a prior p(cm|θ
c), parameterized

by θc, which in turn has a prior p(θc). In this paper, we consider as prior

for Cm: (i) a binomial distribution Bi(ps) with N − 1 trials and probabil-
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ity of success ps; (ii) a multinomial distribution Mult(γ) with parameter

γ. We adopt conjugate priors for the parameters ps and γ, i.e., the beta

distribution B(κ, λ) and Dirichlet distribution Di(ζ) respectively.

Note that a binomial prior Bi(ps) for Cm is equivalent to deleting copies of

the mother events independently with probability 1 − ps (cf. DELETION

step). On the other hand, if the prior p(cm|θ
c) is a multinomial distribution,

the copies are in general no longer deleted independently.

• Conditional on the number Cm of copies, the copies are attributed uniformly

at random to other signals Xj , with the constraints of at most one copy

per signal and j 6= i(m); since there are
(

N−1
cm

)

possible attributions Am ⊆

{1, . . . , i(m) − 1, i(m) + 1, . . . , N} with |Am| = cm, the probability mass of

an attribution Am is p(Am|cm) =
(

N−1
cm

)−1
.

• The process of generating a noisy copy Xi,r from a mother bump X̃m is

described by a conditional distribution px(xi,r|x̃m; θx
i ), parameterized by

some vector θx
i that may differ for each point process Xi. For the sake of

simplicity, the conditional distribution px is assumed to be identical for all

mother bumps X̃m and noisy copies Xi,r. The vectors θx
i may be treated as

(mutually independent) random vectors with non-trivial priors p(θx
i ).

In the case of bump models (cf. Fig. 1), a simple mechanism to generate

copies is to slightly shift the mother bump center while the other mother

bump parameters (width, height, and amplitude) are drawn from some prior

distribution, independently for each copy; the latter four bump parameters

could be taken into account in a less trivial way, but due to space con-

straints we omit such extensions here. The center offset may be modeled

as a bivariate Gaussian random variable with mean vector (δt,i, δf,i) and

diagonal non-isotropic covariance matrix Vi = diag(st,i, sf,i), and hence,

θx
i = (δt,i, δf,i, st,i, sf,i). For simplicity, we will assume that st,i = st and
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sf,i = sf for all i. We adopt the improper priors p(δt,i) = 1 = p(δf,i) for δt,i

and δf,i respectively, and conjugate priors for st and sf , i.e. scaled inverse

chi-square distributions:

p(st) =
(s0,tνt/2)νt/2

Γ(νt/2)

e−νts0,t/2st

s
1+νt/2
t

(5)

p(sf) =
(s0,fνf/2)νf/2

Γ(νf/2)

e−νfs0,f /2sf

s
1+νf/2
f

, (6)

where νt and νf are the degrees of freedom, and s0,t and s0,f are the width of

the scaled inverse chi-square distributions, and Γ(x) is the Gamma function.

It is noteworthy that there might be a non-trivial timing and frequency

offset between the bump models. The parameters (δt,i, δf,i) are introduced

in the model to account for such offsets.

For later convenience, we will introduce some more notation. The exemplar

associated to mother event X̃m is denoted by Xi(m),k(m), it is the event k(m)

in point process Xi(m). We denote the set of pairs (i(m), k(m)) by Iex. A noisy

copy of X̃m is denoted by Xj(m),ℓ(m), it is the event ℓ(m) in point process Xj(m)

with j(m) ∈ Am. We denote the set of all pairs (j(m), ℓ(m)) associated to X̃m

by Icopy
m , and furthermore define Icopy △

= Icopy
1 ∪· · ·∪ Icopy

M and I = Iex∪ Icopy.

In this notation, the overall probabilistic model may be written as:

p(X̃,X, I, θ) = p(θc)p(θx)(1 − λ vol(S))λMN−M

M
∏

m=1

δ
(

xi(m),k(m) − x̃m

)

p(cm|θ
c)

(

N − 1

cm

)−1

∏

(i,j)∈Icopy
m

px(xi,j|x̃m, θ
x). (7)

If the point processes X = (X1, . . . , XN) are well-synchronized, almost all

processes Xi contain a copy of each mother bump X̃m, and therefore, the sets

Icopy
m are either of size N − 1 or are slightly smaller. Moreover, in the case of
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bump models, the variances st and sf are then small. Therefore, given point

processes X = (X1, . . . , XN), we wish to infer I and θ, since those variables

contain information about similarity.

We gain additional insight into this inference problem by considering the log-

arithm of the above stochastic model:

− log p(X̃,X, I, θ) =

− log p(θc) − log p(θx) − log(1 − λ vol(S)) −M log
λ

N

−
M
∑

m=1

log δ
(

xi(m),k(m) − x̃m

)

− log
(

p(cm|θ
c)

(

N − 1

cm

)−1
)

−
∑

(i,j)∈log Icopy
m

log px(xi,j|x̃m, θ
x). (8)

The term − log px(xi,j|x̃m, θ
x) may be interpreted as a measure for the distance

between xi,j and x̃m; note that this measure is not necessarily symmetric or

non-negative. If px is a Gaussian distribution (as in the case of bump models),

this measure is an Euclidean distance. In other applications, non-Euclidean

distances may be more appropriate. The proposed algorithm can straightfor-

wardly handle arbitrary distance measures.

Let us now consider specific choices for p(cm|θ
c); if the latter is a binomial

distribution with N − 1 trials and probability of success ps, and the prior for
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ps is a beta distribution B(κ, λ), we have:

− log p(X̃,X, I, θ) =

− log B(ps; κ, λ) − log p(θx) − log(1 − λ vol(S))

−M log
λ

N
−

M
∑

m=1

log δ
(

xi(m),k(m) − x̃m

)

−M(N − 1) log δ −
M
∑

m=1

(N − 1 − cm) log
1 − ps

ps

−
∑

(i,j)∈Icopy
m

log px(xi,j|x̃m, θ
x), (9)

which can be rewritten as:

− log p(X̃,X, I, θ) =

− log B(ps; κ, λ) − log p(θx) − log(1 − λ vol(S)) + αM

−
M
∑

m=1

log δ
(

xi(m),k(m) − x̃m

)

+ β
M
∑

m=1

(N − 1 − cm)

−
∑

(i,j)∈Icopy
m

log px(xi,j|x̃m, θ
x), (10)

where

α = − log
λ

N
− (N − 1) log ps

and

β = log
(

ps

1 − ps

)

(11)

If p(cm|θ
c) is a multinomial distribution Mult(γ) with parameter γ, and the
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prior for γ is a Dirichlet distribution Di(ζ), the expression (8) becomes:

− log p(X̃,X, I, θ) =

− log Di(γ; ζ) − log p(θx) − log(1 − λ vol(S)) + φM

−
M
∑

m=1

log δ
(

xi(m),k(m) − x̃m

)

+ g(cm)

−
∑

(i,j)∈log I
copy
m

log px(xi,j |x̃m, θ
x). (12)

where φ = − log λ
N

, and the non-linear function g is defined as:

g(cm) = − log γm + log

(

N − 1

cm

)

. (13)

4 Statistical Inference

A reasonable approach to infer (I, θ) is maximum a posteriori (MAP) estima-

tion:

(Î, θ̂) = argmax
(I,θ)

log p(X̃,X, I, θ). (14)

There is no closed form expression for (14), therefore, we need to resort to

numerical methods. A simple technique to try to find (14) is cyclic maximiza-

tion: We first choose initial values θ̂(0), and then perform the following updates

for r ≥ 1 until convergence:

Î(r) = argmax
I

log p(X̃,X, I, θ̂(r−1)) (15)

θ̂(r) = argmax
θ

log p(X̃,X, Î(r), θ). (16)

First we consider the update (15), which we will carry out by integer program-

ming. Next we treat the update (16) of the parameters θ.

16



4.1 Integer Program

We write the update (15) as an integer program, i.e., a discrete optimization

problem with linear objective function and linear (equality and inequality)

constraints. To this end, we introduce the following variables:

• Bi,k is a binary variable equal to one iff the k-th event of Xi is an exemplar.

• Bi,k,i′,k′ is a binary variable equal to one iff the k-th event of Xi is copy of

exemplar Xi′,k′.

• Bi,i′,k′ is a binary variable equal to one iff no event of Xi is a copy of

exemplar Xi′,k′.

Note that bi,k,i,k′ = 0 for all k and k′ and bi,i,k′ = 1 for all i and k′, since Xi

must not contain a noisy copy of a mother event X̃m if it already contains the

exemplar associated to X̃m.

We will first consider a binomial prior for the number of copies Cm, which

directly leads to an integer program. Next we consider a multinomial prior for

Cm, which results in a non-linear objective function. By introducing auxiliary

variables, this objective function can be written as a linear function in the

resulting augmented parameter space, and the associated combinatorial opti-

mization problem can be formulated as an integer program, as we will briefly

outline in Section 4.1.2.

4.1.1 Binomial prior

We first assume that the parameters θx and ps of the binomial prior are con-

stant. By substituting (10) in (15), it can be easily shown that with the above
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choice of variables B, the conditional maximization (15) may be cast as the

following integer program in B:

min
b

C + α̂(r−1)
∑

i,1≤k≤ni

bi,k + β̂(r−1)
∑

i,i′ 6=i,1≤k′≤ni′

bi,i′,k′

−
∑

i,i′,1≤k≤ni,1≤k′≤ni′

bi,k,i′,k′ log px(xi,k|xi′,k′; θ̂(r−1)) (17)

subject to

∀i, k,
∑

i′,k′

bi,k,i′,k′ + bi,k = 1 (18)

∀i, i′ 6= i, k′, bi,i′,k′ = bi′,k′ −
∑

1≤k≤ni

bi,k,i′,k′, (19)

where C is a constant, and

α̂(r−1) =− log
λ

N
− (N − 1) log p̂(r−1)

s

and

β̂(r−1) = log
(

p̂(r−1)
s

1 − p̂
(r−1)
s

)

. (20)

The sum
∑

i,k bi,k in (17) is equal to the number of exemplars M ; therefore, the

first term in (17) assigns a cost α to each exemplar. The second term in (17)

associates a cost β to every deletion. Indeed, if (i′, k′) is not an exemplar,

∑

i bi,i′,k′ is equal to zero; if (i′, k′) is the exemplar associated to the m-th

mother event,
∑

i bi,i′,k′ = (N − 1 − cm), which is the number of deletions in

the m-th cluster. The third term assigns a cost to each copy (i, k) of exemplar

(i′, k′), proportional to the “distance” − log px between both events.

The constraint (18) ensures that each event is either an exemplar or a copy

of an exemplar. The constraint (19), combined with the fact that Bi,i′,k′ is a

binary variable, encodes the following:

• Bi,k,i′,k′ can only be equal to one if Bi′,k′ is equal to one, i.e. (i, k) can be a
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copy of (i′, k′) iff (i′, k′) is an exemplar,

• at most one event in Xi can be a copy of (i′, k′),

• Bi,i′,k′ is one iff (i′, k′) is an exemplar but has no copy in Xi.

The discrete optimization problem (17)-(19) is an integer program in B, since

the objective function (17) and constraints (18) (19) are linear in the vari-

ables B.

4.1.2 Multinomial prior

First we assume that the parameters θx and γ of the multinomial prior are con-

stant. By substituting (12) in (15), the conditional maximization (15) results

in the following combinatorial optimization problem:

min
b

C̃ + φ
∑

i,1≤k≤ni

bi,k

+
∑

i′,1≤k′≤ni′

bi′,k′ ĝ(r−1)
(

N − 1 −
∑

i6=i′
bi,i′,k′

)

−
∑

i,i′,1≤k≤ni,1≤k′≤ni′

bi,k,i′,k′ log px(xi,k|xi′,k′; θ̂(r−1)), (21)

subject to the constraints (18) (19), where C̃ is an arbitrary constant and and

the non-linear function g(r−1) is defined as:

ĝ(r−1)(c) = − log γ̂(r−1)
c + log

(

N − 1

c

)

, (22)

for c = 0, 1, . . . , N − 1. Note that the objective function (21) is non-linear in

B since it involves the non-linear function g. We will now introduce auxiliary

variables such that the objective function (21) is linear in those variables; we

will then reformulate (21) as an integer program in the augmented space of

variables.

19



Let us first point out that for an arbitrary function f we can always write:

f(x) =
∑

x′∈X

f(x′)δ[x− x′], (23)

with discrete (finite or infinite) set X . By introducing variables Dx′, we can

rewrite (23) as:

f(x) =
∑

x′∈X

f(x′)dx′, (24)

with the constraint dx′ = δ[x − x′]. The key observation here is that (24) is

linear in Dx′.

In this vein, we introduce the binary variables Dv,i′,k′ and rewrite the objective

function (21) as:

min
b

φ
∑

i,1≤k≤ni

bi,k +
∑

v,i′,1≤k′≤ni′

g(r−1)
v dv,i′,k′

−
∑

i,i′,1≤k≤ni,1≤k′≤ni′

bi,k,i′,k′ log px(xi,k|xi′,k′; θ) + C̃, (25)

where g(r−1)
v = g(r−1)

(

N − 1 − v
)

. This alternative formulation is equivalent

to the original expression (21) iff Dv,i′,k′ equals one if both v =
∑

i6=i′ bi,i′,k′

and bi′,k′ = 1, and is zero otherwise. We express those constraints on Dv,i′,k′

as follows:

v −
∑

i6=i′
bi,i′,k′ ≤ av,i′,k′, (26)

∑

i6=i′
bi,i′,k′ − v≤ av,i′,k′, (27)

av,i′,k′ ≤N (1 − dv,i′,k′), (28)
∑

v

dv,i′,k′ = bi′,k′, (29)

where Av,i′,k′ are additional auxiliary binary variables. The first two constraints

encode that av,i′,k′ ≥ |v −
∑

i6=i′ bi,i′,k′|. If v 6=
∑

i6=i′ bi,i′,k′, the variable Av,i′,k′

is strictly positive, and from the third inequality it follows that Dv,i′,k′ equals
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zero. On the other hand, if v =
∑

i6=i′ bi,i′,k′, the first two constraints no longer

force Av,i′,k′ to be non-zero, and they do not impose any constraint on Dv,i′,k′.

However, from the fourth constraint it follows that if bi′,k′ = 1 and hence if

(i′, k′) is an exemplar, one of the Dv,i′,k′ (with fixed i′ and k′) is equal to one.

By setting Dv,i′,k′ equal to one if v =
∑

i6=i′ bi,i′,k′ and zero otherwise, one fulfills

then all four constraints. If bi′,k′ = 0 and hence if (i′, k′) is not an exemplar,

all Dv,i′,k′ (with fixed i′ and k′) are equal to zero. By setting all Dv,i′,k′ equal

to zero, one in that case fulfills all four constraints.

In summary: the non-linear combinatorial optimization problem with objec-

tive (21) and constraints (18) (19) is equivalent to the integer program with

objective (25) and constraints (18) (19) combined with (26)–(29).

4.1.3 Complexity

In the case N = 2, it can be seen that the combinatorial optimization prob-

lem (15) can be reduced to a bipartite maximum weighted matching opti-

mization problem, which can be solved in polynomial time through several

methods: linear programming relaxation, Edmond-Karp algorithm, or max-

product message-passing algorithm detailed in (5). For N > 2, (15) is very

similar to solving a maximum weighted N-dimensional matching. For the pur-

pose of understanding the combinatorial hardness of the problem, we show

that for N ≥ 5, the maximum 3-dimensional matching problem can be re-

duced to (15) when forgoing the euclidean costs assumptions. Since maximum

3-dimensional matching is NP-hard, it results that (15) (with general costs)

is also NP-hard. The problem is actually NP-hard for N ≥ 3, but the proof

is more involved and beyond the scope of this paper. Therefore, the exten-
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sion from 2 time series to more than 2 is far from trivial. Nevertheless, as we

will discuss later, we were able to solve the problem (15) for our purpose in

reasonable time using integer programming techniques.

Proposition 1 The combinatorial problem (15) is NP-hard if N ≥ 5.

We include a sketch of the proof ; it is based on a reduction from maximum

weighted 3-dimensional matching optimization, which is known to be NP-hard

and APX-hard (20) (21).

Let T ⊂ X × Y × Z, where X, Y, Z are disjoint sets. Consider the following

”time-series” X ′, Y ′, Z ′, T ′, U ′. For every x ∈ X (resp. y ∈ Y , z ∈ Z), create

two corresponding bumps x ∈ X ′ and x̃ ∈ U ′ (resp. y ∈ Y ′, z ∈ Z ′, ỹ ∈ U ,

z̃ ∈ U ′) and for every t = (x, y, z) ∈ T , create two bumps t ∈ T ′ and t̃ ∈ U ′.

Set the cost function as follows:

• ps = 1 − ǫ, where ǫ is an extremely small positive constant (practically 0)

• λ = N exp(1)

• For any t = (x, y, z) ∈ T , let sx,t = sy,t = sz,t = 0. For any bump b ∈

X ′ ∪ Y ′ ∪ Z ′ ∪ T ′, let sb,b̃ = β. For any other two bumps b1, b2, let sb1,b2 be

equal to M , where M is a very large positive constant (pratically, +∞).

The first two assumptions effectively set α to −1 and β to a very large number.

Note the following: all bumps in U ′ have to be exemplars (because for any

bump u ∈ U ′ and any other bump b, su,b is infinite). The total cost of bumps

in U ′ being exemplars is therefore an additive constant which does not change

the solution. Moreover, for any bump u ∈ U ′, there exists a unique bump

b ∈ X ′∪Y ′∪Z ′∪T ′ that can be assigned to it (i.e. for any b′ 6= b, sb′,u = +∞).

If this bump b is assigned u, the assignment cost sb,u is β, and since 4 bumps
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are missing in the cluster, the cost of missing bumps is 4β. The total cluster

cost would therefore be 5β. If the bump b is not assigned to u, 5 bumps are

missing in the cluster and the total cluster cost is again 5β. Therefore, bumps

b ∈ X ′ ∪ Y ′ ∪ Z ′ ∪ T ′ can be assigned to their corresponding exemplar in

U ′ without changing the total cost. For this reason, exemplars in U ′ can be

considered as “fake exemplars” (they serve as bins for unmatched bumps in

X ′, Y ′, Z ′ and T ′). The next step consists in observing all other exemplars have

to be in T ′. Indeed, for any bump b1 ∈ X ′ ∪ Y ′ ∪ Z ′, and any other bump b2,

sb2,b1 is infinite. Moreover, since α = −1, the optimization effectively aims at

maximizing the number of exemplars in T ′. Since the cost of missing bumps β

is very large, all “real” clusters (with exemplars in T ′) have to contain a bump

from each time serie X ′, Y ′, Z ′. Let t = (x, y, z) ∈ T . Then the only possible

cluster for exemplar t ∈ T ′ consists of the corresponding bumps x, y, z in

X ′, Y ′, Z ′ (all other assignements bring the cost up to infinity). Finally, since

each bump inX ′, Y ′, Z ′ can only be assigned to one exemplar in T ′, the clusters

differ in each coordinate. It finally follows that the set of real clusters is the

maximum 3-dimensional matching of T ⊂ X × Y × Z.

In practice (see the applications of Section 6.1), we were often able to solve

the corresponding integer program very efficiently: for integer programs with

more than 10’000 variables and 5’000 constraints, the solution of a given was

obtained in less than 1 second on a fast processor (3GHz). The total running

time of the algorithm (iterations of equations (14) and (15) until convergence)

was under 7 seconds on average. This is perhaps surprising, especially in the

light of the fact that message-passing algorithms did relatively poorly on the

problem (slow convergence, relatively weak solutions). We believe that the

good performance of the IP stems from the relatively good performance of the
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LP relaxation. Typically, in our instances, the LP relaxation approximated

the optimal cost within 3%; and a third of the positive components of the

optimal LP solution were integer.

4.2 Parameter Estimation

We now consider the update (16), i.e., estimation of the parameters θ =

(θx, θc). The estimate θ̂(r+1) = (θ̂x(r+1)
, θ̂c(r+1)

) (16) is often available in closed-

form. This is in particular the case for the parametrization θx
i = (δt,i, δf,i, st, sf).

The point estimates δ̂
(r+1)
t,i and δ̂

(r+1)
f,i are the (sample) mean of the timing and

frequency offset respectively, computed between all noisy copies in Xi and

their associated exemplars:

δ̂
(r)
t,i =

1

n
(r)
i

∑

k,i′,k′

b̂
(r)
i,k,i′,k′ (Ti,k − Ti′,k′) (30)

δ̂
(r)
f,i =

1

n
(r)
i

∑

k,i′,k′

b̂
(r)
i,k,i′,k′ (Fi,k − Fi′,k′), (31)

where n
(r)
i is the number of noisy copies in Xi:

n
(r)
i =

∑

k,i′,k′

b̂
(r)
i,k,i′,k′ = ni −

∑

k

b̂
(r)
i,k . (32)

The estimates ŝ
(r)
t and ŝ

(r)
f are obtained as:

ŝ
(r)
t =

νts0,t + n(r)ŝ
(r)
t,sample

νt + n(r) + 2
(33)

ŝ
(r)
f =

νfs0,f + n(r)ŝ
(r)
f,sample

νf + n(r) + 2
, (34)
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where s
(r)
t,sample and s

(r)
f,sample are computed over all exemplars and their noisy

copies:

ŝ
(r)
t,sample =

1

n(r)

∑

i,k,i′,k′

b̂
(r)
i,k,i′,k′ (Ti,k − Ti′,k′)2, (35)

ŝ
(r)
f,sample =

1

n(r)

∑

i,k,i′,k′

b̂
(r)
i,k,i′,k′ (Fi,k − Fi′,k′)2, (36)

and n(r) is the total number of noisy copies:

n(r) =
∑

i,k,i′,k′

b̂
(r)
i,k,i′,k′ =

∑

i

ni −
∑

i,k

b̂
(r)
i,k =

∑

i

ni − M̂ (r). (37)

The parameter ps of the binomial prior for the number of copies Cm is esti-

mated as:

p̂(r)
s =

κ +
∑

i ni − M̂ (r) − 1

κ+ λ+ M̂ (r) − 2
. (38)

The parameter γ of the multinomial prior for number of copies Cm is estimated

as:

γ̂
(r)
j =

ζi − 1 +
∑

i′,k′ b̂
(r)
i′,k′ δ

[

∑

i,k b̂
(r)
i,k,i′,k′ − j

]

∑

i ζi −N +
∑

i,k b̂
(r)
i,k

, (39)

for j = 0, 1, . . . , N − 1.

5 Analysis of Surrogate Data

As in the one-dimensional case (Part I, Section 6), we investigate the robust-

ness and reliability of multi-dimensional SES by means of surrogate data.

We randomly generated 1’000 pairs of two-dimensional point processes (e, e′)

according to the symmetric procedure depicted in Fig. 2.

We considered several values of the parameters ℓ, pd, δt, δf , st (σt) and sf (σf ).

More specifically, the length ℓ was chosen as ℓ = ℓ0/(1−pd), where ℓ0 ∈ N0 is a
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constant. With this choice, the expected length of e and e′ is ℓ0, independently

of pd. We considered the values ℓ0 = 40 and 100, pd = 0, 0.1, . . . , 0.4, δt =

0ms, 25ms, 50ms, σt = 10ms, 30ms, and 50ms, δf = 0Hz, 2.5Hz, 5Hz, σf =

1Hz, 2.5Hz, and 5Hz, tmin = 0s, fmin = 0Hz, tmax = ℓ0 · 100ms and fmax =

ℓ0·1Hz. With this choice, the average event occurrence rate is about 10Hz, for

all ℓ0 and pd. The width ∆tk and height ∆fk of all bumps is set equal to 0.5,

so that (∆tk + ∆t′k′) = 1 = (∆fk + ∆f ′
k′) for all k and k′, and hence δ̄t = δt,

δ̄f = δf , s̄t = st, and s̄f = sf (cf. (??), (??), (??), (??), and Table ??).

We used the initial values δ̂
(0)
t = 0, 30, and 70ms, δ̂

(0)
f = 0Hz, ŝ

(0)
t = (30ms)2,

and ŝ
(0)
f = (3Hz)2. The parameter β was identical for all parameter settings,

i.e., β = 0.005; it was optimized to yield the best overall results. We used an

uninformative prior for δt, δf , st, and sf ,, i.e., p(δt) = p(δf) = p(st) = p(sf)

= 1.

In order to assess the SES measures S = st, ρ, we compute for each above

mentioned parameter setting the expectation E[S] and normalized standard

deviation σ[S] = σ[S]/E[S]. Those statistics are computed by averaging over

1’000 pairs of point processes (e,e′), randomly generated according to the

symmetric procedure depicted in Fig. 2.

The results are summarized in Fig. ?? to ??. From those figures we can make

the following observations:

• The estimates of st and pd are slightly biased, especially for small ℓ0, i.e.,

ℓ0 = 40, st ≥ (30ms)2 and pd > 0.2; more specifically, the expected value

of those estimates is slightly smaller than the true value, which is due to

ambiguity inherent in event synchrony (cf. Fig. ??). However, the bias is

significantly smaller than in the one-dimensional case (cf. Part I, Section 6);
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the bias increases with sf , which is in agreement with our expectations: the

more frequency jitter, the more likely that some events are reversed in

frequency, and hence are aligned incorrectly.

• As in the one-dimensional case, the estimates of δt are unbiased for all

considered values of δt, δf , st, sf , and pd, likewise the estimates of δf (not

shown here).

• The estimates of st do only weakly depend on pd, and vice versa.

• The estimates of st and pd do not depend on δt and δf , i.e., they are robust

to lags δt and frequency offsets δf , since the latter can be estimated reliably.

• The normalized standard deviation of the estimates of δt, st and pd grows

with st and pd, but it remains below 30%. Those estimates are therefore

reliable.

• The expected value of st and pd does hardly depend on the length ℓ0. On

the other hand, the estimates of st and pd are less biased for larger ℓ0.

The normalized standard deviation of the SES parameters decreases as the

length ℓ0 increases, as expected.

In summary, by means of the SES inference method, one may reliably and

robustly determine the timing dispersion st and event reliability ρ of pairs

of multi-dimensional point processes. We wish to reiterate, however, that it

slightly underestimates the timing dispersion and the number of event dele-

tions due to the ambiguity inherent in event synchrony (cf. Fig. ??). Moreover,

similarly as in the one-dimensional case, it is critical to choose an appropriate

set of initial values δ̂
(0)
t , δ̂

(0)
f , ŝ

(0)
t , and ŝ

(0)
f .
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6 Application: Diagnosis of MCI from EEG

Several clinical studies have shown that the EEG of Alzheimer’s disease (AD)

patients is generally less coherent than of age-matched control subjects; this

is also the case for patients suffering from mild cognitive impairment (see (? )

for a review). In this section, we apply SES to detect subtle perturbations in

EEG synchrony of MCI patients.

First we describe the EEG data at hand (Section 6.1), then we describe how

we preprocess the EEG, extract bump models, and apply SES (Section 6.2);

at last, we present our results (Section ??).

6.1 EEG Data

The EEG data used here have been analyzed in previous studies concerning

early diagnosis of Alzheimer’s disease (AD) (? ? ? ? ? ).

Ag/AgCl electrodes (disks of diameter 8mm) were placed on 21 sites according

to 10-20 international system, with the reference electrode on the right ear-

lobe. EEG was recorded with Biotop 6R12 (NEC San-ei, Tokyo, Japan) using

analog bandpass filtering in the frequency range 0.5-250Hz at a sampling rate

of 200Hz. As in (? ? ? ? ? ), the signals were then digitally band pass filtered

between 4 and 30Hz using a third-order Butterworth filter.

The subjects comprised two study groups. The first consisted of a group of

25 patients who had complained of memory problems. These subjects were

then diagnosed as suffering from mild cognitive impairment (MCI) and sub-

sequently developed mild AD. The criteria for inclusion into the MCI group
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were a mini mental state exam (MMSE) score = 24 (max score = 30), though

the average score in the MCI group was 26 (SD of 1.8). The other group was a

control set consisting of 56 age-matched, healthy subjects who had no memory

or other cognitive impairments. The average MMSE of this control group was

28.5 (SD of 1.6). The ages of the two groups were 71.9 ± 10.2 and 71.7 ± 8.3,

respectively. Finally, it should be noted that the MMSE scores of the MCI

subjects studied here are quite high compared to a number of other studies.

For example, in (? ) the inclusion criterion was MMSE = 20, with a mean

value of 23.7, while in (? ), the criterion was MMSE = 22; the mean value was

not provided. The disparity in cognitive ability between the MCI and control

subjects was thus comparatively small, making the present classification task

relatively difficult.

All recording sessions were conducted with the subjects in an awake but rest-

ing state with eyes closed; the EEG technicians prevented the subjects from

falling asleep (vigilance control). After recording, the EEG data has been care-

fully inspected. Indeed, EEG recordings are prone to a variety of artifacts, for

example due to electronic smog, head movements, and muscular activity. The

EEG data has been investigated by an EEG expert, blinded from the results

of this analysis. In particular, only those subjects were retained in the analysis

whose EEG recordings contained at least 20s of artifact-free data. Based on

this requirement, the number of subjects in the two groups described above

was further reduced to 22 and 38, respectively. From each subject, one EEG

segment of 20s was analyzed (for each of the 21 channels).
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Fig. 3. Similarity of three EEG signals (N = 3); from their time-frequency trans-

forms (top), one extracts two-dimensional point processes (“bump models”; bot-

tom), which are then aligned by the proposed algorithm.

6.2 Methods

We successively apply the following transformations to the EEG signals:

(1) wavelet transform,

(2) normalization of the wavelet coefficients,

(3) bump modeling of the normalized wavelet representation,

(4) aggregation of the resulting bump models in several regions.

Eventually, we compute the SES parameters for each pair of aggregated bump

models. In the following, we detail each of those five operations.
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6.2.1 Wavelet Transform

In order to extract the oscillatory patterns in the EEG, we apply a wavelet

transform. More specifically, we use the complex Morlet wavelets (? ? ):

ψ(t) = A exp
(

− t2/2σ2
0

)

exp(2iπf0t), (40)

where t is time, f0 is frequency, σ0 is a (positive) real parameter, and A is a

(positive) normalization factor. The Morlet wavelet (40) has proven to be well

suited for the time-frequency analysis of EEG (see (? ? )). The product w0 =

2πf0 · σ0 determines the number of periods in the wavelet (“wavenumber”).

This number should be sufficiently large (≥ 5), otherwise the wavelet ψ(t)

does not fulfill the admissibility condition:

∫ |ψ(t)|2

t
dt <∞, (41)

and as a result, the temporal localization of the wavelet becomes unsatisfac-

tory (? ? ). In the present study, we choose a wavenumber w0 = 7, as in

the earlier studies (? 9); this choice yields good temporal resolution in the

frequency range we consider in this study.

The wavelet transform x(t, s) of an EEG signal x(t) is obtained as:

x(t, s)
△

=
K
∑

t′=1

x(t′)ψ∗

(

t′ − t

s

)

, (42)

where ψ(t) is the Morlet “mother” wavelet (40), s is a scaling factor, and

K = fsT , with fs the sampling frequency and T the length of the signal.

For the EEG data at hand, we have T = 20s and fs = 200Hz and hence

K = 4000. The scaled and shifted “daughter” wavelet in (42) has center

frequency f
△

= f0/s. In the following, we will use the notation x(t, f) instead

of x(t, s).
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Next we compute the squared magnitude s(t, f) of the coefficients x(t, f):

s(t, f)
△

= |x(t, f)|2. (43)

Intuitively speaking, the time-frequency coefficients s(t, f) represents the en-

ergy of oscillatory components with frequency f at time instances t. It is

noteworthy that s(t, f) contains no information about the phase of that com-

ponent.

It is well known that EEG signals have very non-flat spectrum with an overall

1/f shape, besides state-dependent peaks at specific frequencies. Therefore,

the map s(t, f) contains most energy at low frequencies f . If we directly apply

bump modeling to the map s(t, f), most bumps would be located in the low-

frequency range, in other words, the high-frequency range would be under-

represented. Since relevant information might be contained at high frequency,

we normalize the map s(t, f) before extracting the bump models.

We wish to point out that the time-frequency map s(t, f) may be determined

by alternative methods. For example, one may compute s(t, f) by the multi-

taper method (? ) or by filterbanks (? ). We decided to use the Morlet wavelet

transformation for two reasons:

• Morlet wavelets have the optimal joint time-frequency resolution. We re-

mind the reader of the fact that the joint time-frequency resolution is fun-

damentally limited by the uncertainty principle: the resolution in both time

and frequency cannot be arbitrarily high simultaneously. It is well known

that the Morlet wavelets achieve the uncertainty relation with equality (?

? ? ).

• EEG signals are typically highly non-stationary; the wavelet transform is
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ideally suited for non-stationary signals (? ), in contrast to approaches based

on multitapers and filterbanks.

However, it may also be meaningful to use multitaper method or filterbanks.

For example, the multitaper method too is optimal in some sense: it minimizes

out-of-band “leakage”, and all “voxels” of the time-frequency domain have the

same size and shape. In addition, in the multitaper method all estimates are

independent due to orthogonality, a property not shared by wavelets (? ).

6.2.2 Normalization

The coefficients s(t, f) are centered and normalized, resulting in the coeffi-

cients z̃(t, f):

z̃(t, f)
△

=
s(t, f) −ms(f)

σs(f)
, (44)

where ms(f) is obtained by averaging s(t, f) over the whole length of the EEG

signal:

ms(f) =
1

K

K
∑

t=1

s(t, f). (45)

Likewise, σ2
s (f) is the variance of s(t, f):

σ2
s (f) =

1

K

K
∑

t=1

(

s(t, f) −ms(f)
)2
. (46)

In words: the coefficients z̃(t, f) encode fluctuations from the baseline EEG

power at time t and frequency f . The normalization (44) is known as z-score

(see, e.g., (? )), and is commonly applied (? ? ? 9? ). The coefficients z̃(t, f)

are positive when the activity at t and f is stronger than the baseline ms(f)

and negative otherwise.

There are various approaches to apply bump modeling to the z-score z̃(t, f).

One may first set the negative coefficients to zero, and next apply bump mod-
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eling. The bump models in that case represent peak activity. Alternatively,

one may first set the positive coefficients equal to zero, reverse the sign of the

negative coefficients, and then apply bump modeling. In that case, the bump

models represent dips in the energy maps s(t, f).

In the application of diagnosing AD (see Section 6.1), we will follow yet another

approach. In order to extract bump models, we wish to exploit as much infor-

mation as possible from the z̃ maps. Therefore we will set only a small fraction

of the coefficients z̃(t, f) equal to zero, i.e., the 1% smallest coefficients. This

approach was also followed in (9), and is equivalent to the following trans-

formation: we shift the coefficients (44) in the positive direction by adding a

constant α, the remaining negative coefficients are set to zero:

z(t, f)
△

=
⌈

z̃(t, f) + α
⌉+

=









s(t, f) −ms(f)

σs(f)
+ α









+

, (47)

where ⌈x⌉+ = x if x ≥ 0 and ⌈x⌉+ = 0 otherwise. The constant α is chosen such

that only 1% of the coefficients remains negative after addition with α; this

corresponds to α = 3.5 in the application of diagnosing AD (see Section 6.1).

(In the study of (9), it corresponds to α = 2.) The top row of Fig. 3 shows

the normalized wavelet map z (47) of two EEG signals.

6.2.3 Bump Modeling

Next, bump models are extracted from the coefficient maps z (see Fig. 3

and (9)). We approximate the map z(t, f) as a sum zbump(t, f, θ) of a “small”

number of smooth basis functions or “bumps” (denoted by fbump):

z(t, f) ≈ zbump(t, f, θ)
△

=
Nb
∑

k=1

fbump(t, f, θk), (48)
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where θk are vectors of bump parameters and θ
△

= (θ1, θ2, . . . , θNb
). The sparse

bump approximation zbump(t, f, θ) represents regions in the time-frequency

plane where the EEG contains more power than the baseline; in other words,

it captures the most significant oscillatory activities in the EEG signal.

Fig. 4. Learning the bump parameters by minimizing the quadratic cost func-

tion (49); Top (left and right): a given patch of the time-frequency map. Bottom

left: initial bump; Bottom right: bump obtained after adaptation.

We choose half-ellipsoid bumps since they are well suited for our purposes (?

9) (see Fig. 4). Since we wish to keep the number of bump parameters as low

as possible, the principal axes of the half ellipsoid bumps are restricted to be

parallel to the time-frequency axes. As a result, each bump is described by

five parameters: the coordinates of its center (i.e., time tk and frequency fk),

its amplitude wk > 0, and the extension ∆tk and ∆fk in time and frequency

respectively, in other words, θk = (tk, fk, wk,∆tk,∆fk). More precisely, the

ellipsoid bump function fbump(t, f, θk) is defined as:

fbump(t, f, θk) =























wk

√

1 − κ(t, f, θk) for 0 ≤ κ(t, f, θk) ≤ 1

0 for κ(t, f, θk) > 1,

(49)

where

κ(t, f, θk) =
(t− tk)

2

(∆tk)2
+

(f − fk)
2

(∆fk)2
. (50)
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For the EEG data described in Section 6.1, the number of bumps Nb (cf. (48))

is typically between 50 and 100, and therefore, zbump(t, f, θ) is fully specified by

a few hundred parameters. On the other hand, the time-frequency map z(t, f)

consists of between 104 and 105 coefficients; the bump model zbump(t, f, θ) is

thus a sparse (but approximate) representation of z(t, f).

The bump model zbump(t, f, θ) is extracted from z(t, f) by the following algo-

rithm (? 9):

(1) Define appropriate boundaries for the map z(t, f) in order to avoid finite-

size effects.

(2) Partition the map z(t, f) into small zones. The size of these zones depends

on the time-frequency ratio of the wavelets, and are optimized to model

oscillatory activities lasting 4 to 5 oscillation periods. Larger oscillatory

patterns are modeled by multiple bumps.

(3) Find the zone Z that contains the most energy.

(4) Adapt a bump to that zone; the bump parameters are determined by min-

imizing the quadratic cost function (see Fig. 4):

E(θk)
△

=
∑

t,f∈Z

(

z(t, f) − fbump(t, f, θk)
)2
. (51)

Next withdraw the bump from the original map.

(5) The fraction of total intensity contained in that bump is computed:

F =

∑

t,f∈Z fbump(t, f, θk)
∑

t,f∈Z z(t, f)
. (52)

If F < G for three consecutive bumps (and hence those bumps contain only

a small fraction of the energy of map z(t, f)), stop modeling and proceed

to (6), otherwise iterate (3).

(6) After all signals have been modeled, define a threshold T ≥ G, and remove
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the bumps for which F < T . This allows us to trade off the information

loss and modeling of background noise: when too few bumps are generated,

information about the oscillatory activity of the brain is lost. On the other

hand, if too many bumps are generated, the bump model also contains low-

amplitude oscillatory components; since the measurement process typically

introduces a substantial amount of noise, it is likely that the low-amplitude

oscillatory components do not stem from organized brain oscillations but

are instead due measurement noise. By adjusting the threshold T , we try

to find an appropriate number of bumps.

In the present application, we used a threshold G = 0.05. With this threshold,

each bump model contains many bumps. Some of those bumps may actu-

ally model background noise. Therefore, we further pruned the bump models

(cf. Step 6). We tested various values of the threshold T ∈ [0.2, 0.25]; as we will

show, the results depend on the specific choice of T : the optimal separation

between MCI and age-matched control subjects is obtained for T = 0.22, the

separation gradually diminishes for increasing and decreasing values of T . We

refer to (? 9) for more information on bump modeling. In particular, we used

the same choice of boundaries (Step 1) and partitions (Step 2) as in those

references.

Eventually, we obtain 21 bump models, i.e., one per EEG channel. In the

following, we describe how those models are further processed.

6.2.4 Aggregation

As a next step, we group the 21 electrodes into a small number NR of regions,

as illustrated in Fig. 5 for NR = 5; we will report results for NR = 3, 5, and
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Fig. 5. The 21 electrodes used for EEG recording, distributed according to the 10–20

international placement system (18). The clustering into NR = 5 zones is indicated

by the colors and dashed lines (1 = frontal, 2 = left temporal, 3 = central, 4 = right

temporal and 5 = occipital).

7. From the 21 bump models obtained by sparsification (cf. Section 6.2.3), we

extract a single bump model for each of the zones by means of the aggregation

algorithm described in (9).

6.2.5 Stochastic Event Synchrony

The results from our exemplar-based approach are summarized in Table 1;

the results are for the binomial prior, the results for the multinomial prior

closely agree. In other words, the choice of prior does again not seem to be

crucial. We adopted constant parameters, because time-varying parameters

are less suitable since we consider spontaneous EEG. We studied the following

statistics:

• Posterior distribution p(cm = i|X) = pc
i of the number of copies of each
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exemplar cm, parameterized by (pc
0, p

c
1, . . . , p

c
4),

• c̄m: average number of copies per cluster,

• st: variance in time domain (“time jitter”),

• sf : variance in frequency domain (“frequency jitter”),

• ∆T̄ : average width of bumps,

• ∆F̄ : average height of bumps,

• F̄ : average frequency of bumps.

We also consider the linear combination hc of all parameters pc
i that optimally

separates both subject groups. Interestingly, the latter statistic amounts to

about the same p-value as the index ρ of SES (5). The posterior p(cm|X)

mostly differs in pc
1, p

c
2 and pc

4 (see Fig. 6): in MCI patients, the number of

clusters of size five (pc
4) significantly decreases; on the other hand, the number

of clusters of size one (pc
1) and two (pc

2) significantly increases. This explains

and confirms the observed increase of ρ in MCI patients (5). Combining hc

with ffDTF and ∆T̄ (or c̄m with ffDTF and ∆T̄ ) allows to separate the two

groups quite well (more than 90% correctly classified), as shown in Fig. 8;

this is far better than what can be achieved by means of classical similarity

measures (about 75% correctly classified). Classification rates between 80 and

85% can be obtained by combining two features (see Fig. 7(a)).

Stat. pc
0 pc

1 pc
2 pc

3 pc
4 c̄m hc σt σf ∆T̄ ∆F̄ F̄

p-value 0.016 2.9−4∗∗ 0.089 0.59 0.0054∗ 1.10−3∗∗ 1.10−4∗∗ 0.46 0.28 2.3.10−4∗∗ 0.023∗ 2.10−3∗∗

Table 1

Sensitivity of multivariate SES for diagnosing MCI (p-values for Mann-Whitney

test; * and ** indicate p < 0.05 and p < 0.005 respectively).
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Fig. 6. Box plots for posterior distribution p(cm = i|X) = pc
i .

7 Conclusion

We proposed an approach to determine the similarity of multiple (one- and

multi-dimensional) point processes; it is based on an exemplar-based statistical

model that describes how the point processes are related through a common

hidden “mother” process. The similarity of the point processes is determined

by performing inference in that model by means of integer programming tech-

niques in conjunction with point estimation of the parameters. The proposed

technique may be used for various applications in neuroscience (e.g., in brain-

computer interfaces, analysis of spike data), biomedical signal processing, and

beyond.
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