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A Examples of Decision Networks

A.1 Independent set

Suppose the nodes of the graph are equipped with weights Wv ≥ 0, v ∈ V . A set of nodes
I ⊂ V is an independent set if (u, v) /∈ E for every u, v ∈ I. The weight of an (independent)
set I is

∑

u∈I Wu. The maximum weight independent set problem is the problem of finding the
independent set I with the largest weight. It can be recast as a decision network problem by setting
χ = {0, 1},Φe(0, 0) = Φe(0, 1) = Φe(1, 0) = 0,Φe(1, 1) = −∞,Φv(1) = Wv,Φv(0) = 0.

A.2 Graph Coloring

An assignment φ of nodes V to colors {1, . . . , q} is defined to be proper coloring if no monochromatic
edges are created. Namely, for every edge (v, u), φ(v) &= φ(u). Suppose each node/color pair
(v, x) ∈ V ×{1, . . . , q} is equipped with a weight Wv,x ≥ 0. The (weighted) coloring problem is the
problem of finding a proper coloring φ with maximum total weight

∑

v Wv,φ(v). In terms of decision
network framework, we have Φv,u(x, x) = −∞,Φv,u(x, y) = 0,∀x &= y ∈ χ = {1, . . . , q}, (v, u) ∈ E
and Φv(x) = Wv,x,∀v ∈ V, x ∈ χ.

A.3 MAP estimation

In this example, we see a situation in which the reward functions are naturally randomized.
Consider a graph (V,E) with |V | = n and |E| = m, a set of real numbers p = (p1, . . . , pn) ∈ [0, 1]n,
and a family (f1, . . . , fm) of functions such that for each (i, j) ∈ E, fi,j is a function fi,j(o, x, y)
where o is real and x, y ∈ {0, 1}2. Assume that for each (x, y), fi,j(o, x, y) is a probability density for
o. Consider two sets C = (Ci)1≤i≤n and O = (Oj)1≤j≤m of random variables, with joint probability
density

P (O,C) =
∏

i

pi
ci(1 − pi)

1−ci
∏

(i,j)∈E

fi,j(oi,j, ci, cj)

C is a set of Bernoulli random variables (“causes”) with probability P (Ci = 1) = pi, and O is
a set of continuous “observation” random variables. Conditional on the cause variables C, the
observation variables O are independent, and each Oi,j has density fi,j(o, ci, cj). Assume the
variables O represent observed measurements used to infer on hidden causes C. Using Bayes’s
formula, given observations O, the log posterior probability of the causes variables C is equal to:

log P (C = c |O = o) = K +
∑

i

Φi(ci) +
∑

i,j∈E

Φi,j(ci, cj)
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where

Φi(ci) = log(pi/(1 − pi))ci

Φi,j(ci, cj) = log(fi,j(oi,j , ci, cj))

where K is a random number which does not depend on c. Finding the maximum a posteriori
values of C given O is equivalent to finding the optimal solution of the decision network G =
(V,E,Φ, {0, 1}). Note that the interaction functions Φi,j are naturally randomized, since Φi,j(x, y)
is a continuous random variable with distribution

dP (Φi,j(x, y) = t) = et
∑

x′,y′∈{0,1}

dP (fi,j(o, x
′, y′) = et)

B Proof of proposition 5

Proposition 8. [Proposition 5 in main text] For every x &= y, B̃v(x) − B̃v(y) is a continuous
random variable with density bounded above by 1√

4πδ
. Moreover, for any random vector z, we have:

E|F (z) − F̃ (z)] ≤ T

√

2

π
|V |δ. (23)

Proof. We have:

B̃u(x) − B̃u(y) = Bu(x) − Bu(y) + δZu,x − δZu,y.

Let D = Bu(x)−Bu(y) and D̃ = B̃u(x)− B̃v(y). Since Zu,x−Zu,y is a zero mean Gaussian random
variable with variance 2, then for every t ∈ R and h > 0, by conditioning on Zu,x−Zu,y, we obtain:

P(t ≤ D̃ < t + h) =

∫ +∞

−∞

1√
4πδ

e−
u2

4δ2 P(t − u ≤ D < t + h − u)du

≤ 1√
4πδ

∫ +∞

−∞
P(t − u ≤ D < t + h − u)du ≤ h√

4πδ
,

where the last inequality follows from the fact that, for any random variable X with E|X| < +∞,

∫ ∞

−∞
P(x ≤ X < x + h)dx ≤ h

Taking the limit for h → 0, we conclude that D has a density and which is bounded by 1√
4πδ

.

Finally, F (x) − F (x̃) = F (x) − F̃ (x) + F̃ (x) − F̃ (x̃) + F̃ (x̃) − F (x̃). By optimality of x̃ for F̃ , we
have F̃ (x) − F̃ (x̃) ≤ 0, so E[F (x) − F (x̃)] ≤ E|F (x) − F̃ (x)| + E|F̃ (x̃) − F (x̃)|.

We have:
|F (x) − F̃ (x)| ≤ δ

∑

v

|Zv,x| ≤ δ
∑

v

∑

y

|Zv,y|
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which implies

E|F (x) − F̃ (x)| ≤ 2T

√

2

π
|V | δ

Similarly we have

E|F (x̃) − F̃ (x̃)| ≤ δ
∑

v

E|Zv,x̃| ≤ 2T

√

2

π
|V | δ

and so the suboptimality gap is bounded by 4T
√

2
π |V | δ

C Proof of Theorem 6

Theorem 8. [Theorem 6 in main text] Suppose a decision network G satisfies correlation decay
property with rate ρ(r). Then, there exists some constants K1,K2 such that for all r > 0

E[F (x) − F (xr,δ)] ≤ K1

√

ρ(r)

δ
+ K2δ. (24)

Let δ = δ(r) = ρ1/5(r) and K3 = K1 + K2. Then,

E[F (x) − F (xr,δ(r))] ≤ K3δ(r). (25)

Finally suppose G exhibits exponential correlation decay property with rate αc. For any ε > 0, if

r ≥ 3
(

| log ε| + log |K3| + 1/3| log Kc|
)

| log(αc)|−1, then E[F (x)] − E[F (xr,δ(r))] ≤ ε

Proof. Let x̃ be an optimal solution for the network G̃. We first write a telescoping sum

F (x) − F (xr,δ) =
(

F (x) − F̃ (x)
)

+
(

F̃ (x) − F̃ (x̃)
)

+
(

F̃ (x̃) − F̃ (xr,δ)
)

+
(

F̃ (xr,δ) − F (xr,δ)
)

Since x̃ is optimal for F̃ ,
(

F̃ (x) − F̃ (x̃)
)

≤ 0, and thus

E
[

F (x) − F (xr,δ)
]

≤ E
∣

∣F (x) − F̃ (x)
∣

∣ + E
∣

∣F̃ (x̃) − F̃ (xr,δ)
∣

∣ + E
∣

∣F̃ (xr,δ) − F (xr,δ)
∣

∣ (26)

By proposition 5, we have

E
∣

∣F (x) − F̃ (x)
∣

∣ ≤ T

√

2

π
|V | δ and E

∣

∣F̃ (xr,δ) − F (xr,δ) ≤
∣

∣T

√

2

π
|V | δ (27)

We turn our attention to the term E
∣

∣F̃ (x̃) − F̃ (xr,δ)
∣

∣. By Propositions 4 and 5 for every u

P(xr,δ
u &= x̃u) ≤ 2T 2

π1/4

√

ρ(r)

δ

and therefore, by applying the union bound, for every (u, v), we obtain:

P
(

(xr,δ
u , xr,δ

v ) &= (x̃u, x̃v)
)

≤ 4T 2

π1/4

√

ρ(r)

δ
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We have

E|F̃ (x̃) − F̃ (xr,δ)| ≤
∑

u∈V

E|Φ̃u(x̃u) − Φ̃u(xr,δ
u )| +

∑

(u,v)∈E

E|Φu,v(x̃u, x̃v) − Φu,v(x
r,δ
u , xr,δ

v )|

For any u, v ∈ V ,

E[Φu,v(x̃u, x̃v) − Φu,v(x
r,δ
u , xr,δ

v )] ≤ E

[

1
(xr,δ

u ,xr,δ
v )'=(x̃u,x̃v)

(

∣

∣Φu,v(x̃u, x̃v)
∣

∣ +
∣

∣Φu,v(x
r,δ
u , xr,δ

v )
∣

∣

)]

≤ 2KΦ P
(

(xr,δ
u , xr,δ

v ) &= (x̃u, x̃v)
)1/2

≤ KΦ
2T

π1/8

(ρ(r)

δ

)1/4

where the second inequality follows from Cauchy-Schwarz. Similarly, for any u we have

E|Φ̃u(x̃u) − Φ̃u(xr,δ
u )| ≤E

[

1
xr,δ

u '=x̃u

(

|Φ̃u(x̃u)| + |Φ̃u(xr,δ
u |

)

]

≤E

[

1
xr,δ

u '=x̃u

(

|Φu(x̃u)| + |Φu(xr,δ
u |

)

]

+ 2
∑

x

E|Zu,x|

≤P (xr,δ
u &= x̃u)1/2 KΦ + 2δT

√

2

π

≤KΦ
2T

π1/8

(ρ(r)

δ

)1/4

+ 2δT

√

2

π

By summing over all nodes and edges, we get:

E[F̃ (x̃) − F̃ (xr,δ) ≤ K1

(ρ(r)

δ

)1/4

+
K2

2
δ. (28)

Finally, by injecting equations (27) and (28) into equation (26), equation (24) follows. The bound
(25) is obtained by direct substitution of δ. The last part of the theorem follows immediately
from (25).

D Establishing the correlation decay property. Coupling tech-
nique

The previous section motivates the search for conditions implying the correlation decay property.
This section is devoted to the study of a coupling argument which can be used to show that
correlation decay holds. Results in this section are for the case |χ| = 2. They can be extended to
the case |χ| ≥ 2 at the expense of heavier notations, but not much additional insight gain.

D.1 Notations

Given G = (V,E,Φ, {0, 1}) and u ∈ V , let v1, . . . , vd be the neighbors of u in V . For any r > 0 and
boundary conditions C, C′, define:

1. B(r)
∆
= CE[G, u, r, 1, C] and B′(r)

∆
= CE[G, u, r, 1, C′ ]
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2. For j = 1, . . . d, let Gj = G(u, j, 1), and let Bj(r − 1)
∆
= CE[Gj , vj , r − 1, 1, C] and B′

j(r − 1)
∆
=

CE[Gj , vj , r− 1, 1, C′]. Also let B(r − 1) = (Bj(r − 1))1≤j≤d and B′(r − 1) = (B′
j(r − 1))1≤j≤d

3. For j = 1, . . . d, let (vj1, . . . , vjnj) be the neighbors of vj in Gj , and let Bjk(r − 2) =
CE[Gj(vjk, k, 1), vj , r − 2, 1, C] and B′

jk(r − 2) = CE[Gj(vjk, k, 1), vj , r − 2, 1, C′] for all k =
1 . . . nj. Also let Bj(r − 2) = (Bjk(r − 2))1≤k≤nj

and B′
j(r − 2) = (B′

jk(r − 2))1≤k≤nj
.

4. For simplicity, since 1 is the only action different from the reference action 0, we denote

µu←vj (z)
∆
= µu←vj(1, z).

From equation (3), note the following alternative expression for µu←vj(z)

µu←vj(z) = Φu,vj(1, 1) − Φu,vj(0, 1)+ max(Φu,vj (1, 0) − Φu,vj(1, 1), z) (29)

−max(Φu,vj (0, 0) − Φu,vj(0, 1), z)

5. Similarly, for any j = 1 . . . d and k = 1 . . . nj, let µvj←vjk
(z)

∆
= µvj←vjk

(1, z).

6. For any z = (z1, . . . , zd), let µu(z) =
∑

j µu←vj(zj). Also, for any j, and any z = (z1, . . . , znj ),
let µvj(z) =

∑

1≤k≤nj
µvj←vjk

(zk).

7. For any directed edge e = (u ← v), denote

Φ1
e

∆
= Φu,v(1, 0) − Φu,v(1, 1)

Φ2
e

∆
= Φu,v(0, 0) − Φu,v(0, 1)

Φ3
e

∆
= Φu,v(1, 1) − Φu,v(0, 1)

Xe
∆
= Φ1

e +Φ2
e

Ye
∆
= Φ2

e − Φ1
e = Φu,v(1, 1) − Φu,v(1, 0) − Φu,v(0, 1) + Φu,v(0, 0)

Note that Yu←v = Yv←u, so we simply denote it Yu,v.

Note that for any e, E|Ye| ≤ KΦ (see Assumption 2). Equation (11) can be rewritten as

B(r) = µu(B(r − 1)) + Φu(1) − Φu(0) (30)

B′(r) = µu(B′(r − 1)) + Φu(1) −Φu(0) (31)

Similarly, we have

Bj(r − 1) = µvj (Bj(r − 2)) + φvj (1) − φvj (0) (32)

B′
j(r − 1) = µvj (B

′
j(r − 2)) + φvj (1) − φvj (0) (33)

Finally, equation (29) can be rewritten

µu←vj(z) = Φ3
u←v + max(Φ1

u←vz) − max(Φ2
u←v, z) (34)

We call Ye the interaction coupling; Ye represents how strongly the interaction function Φu,v(xu, xv)
is “coupling” the variables xu and xv. In particular, if Ye is zero, the interaction function Φu,v(xu, xv)
can be decomposed into a sum of two potential functions φu(xu)+φv(xv), that is, the edge between
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u and v is then be superfluous and can be removed. To see why this is the case, take φu(0) = 0,
φu(1) = Φu,v(1, 0) − Φu,v(0, 0), φv(0) = Φu,v(0, 0) and φv(1) = Φu,v(0, 1), which is also equal to
Φu,v(1, 1) − Φu,v(1, 0) + Φu,v(0, 0), since Ye = 0.

D.2 Distance-dependent coupling and correlation decay

Definition 3. A network G is said to exhibit (a, b)-coupling with parameters (a, b) if for every edge
e = (u, v), and every two real values x, x′:

P

(

µu←v(x +Φv(1) − Φv(0)) = µu←v(x
′ +Φv(1) − Φv(0))

)

≥ (1 − a) − b|x − x′| (35)

The probability above, and hence the coupling parameters, depend on both Φv(1) −Φv(0) and
the values Φu,v(x, y). Note that if for all x, x′

P

(

µu←v(x) = µu←v(x
′)
)

≥ (1 − a) − b|x − x′| (36)

then G exhibits (a, b) coupling, but in general the tightest coupling values found for equation (36)
are much weaker than the ones we would find by analyzing condition (35). In a similar spirit,
the following lemma guarantees that the regularization introduced in section 5.2 can only improve
coupling:

Lemma 2. If G exhibits (a, b) coupling, then for any δ ≥ 0, G̃ also exhibits (a, b) coupling.

Proof. Let Z = Zv,1 − Zv,0. Then Φ̃v(1) − Φ̃v(0) = Φv(1) − Φv(0) + Z. For any x, x′

P

(

µu←v(x + Φ̃v(1) − Φ̃v(0)) = µu←v(x
′ + Φ̃v(1) − Φ̃v(0))

)

=
∫

z
dPZ(z)P

(

µu←v(x + z +Φv(1) − Φv(0)) = µu←v(x
′ + z +Φv(1) − Φv(0))

)

Applying definition (35) to x + z and x′ + z, we obtain

P

(

µu←v(x + Φ̃v(1) − Φ̃v(0)) = µu←v(x
′ + Φ̃v(1) − Φ̃v(0))

)

≥
∫

z
dPZ(z)

(

(1 − a) − b|x − x′|
)

≥ (1 − a) − b|x − x′|

This form of distance dependent coupling is a useful tool in proving that correlation decay
occurs, as illustrated by the following theorem:

Theorem 9. Suppose G exhibits (a, b)-coupling. If

a(∆− 1) +
√

bKΦ(∆− 1)3/2 < 1 (37)

then the exponential correlation decay property holds with K = ∆2KΦ and α = a(∆−1)+
√

bKΦ(∆−
1)3/2.
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Suppose G exhibits (a, b)-coupling and that there exists KY > 0 such that |Ye| < KY with probability
1. If

a(∆− 1) + bKY (∆− 1)2 < 1 (38)

then the exponential correlation decay property holds with α = a(∆− 1) + bKY (∆− 1)2

Suppose G exhibits (a, b)-coupling, that the network is locally tree-like (B(u, r) is a tree for every
u ∈ U and depth r used for the cavity recursion) and that for all edges e = (u, v) ∈ E, the random
variables (Φe(x, y))x,y∈{0,1}2 are i.i.d. If

(∆− 1)(a +
√

bKΦ) < 1 (39)

then the exponential correlation decay property holds with α = (∆− 1)(a +
√

bKΦ).

D.2.1 Proof of theorem 9

We begin by proving several useful lemmas. The most important, which will use frequently in the
rest of the paper, states that in the computation tree of the cavity recursion, the cost function of
an edge cost is statistically independent from the subtree below that edge.

Lemma 3. Given u, x and N (v) = {v1, . . . , vd}, for every r, j = 1, . . . , d and y ∈ χ, CE[G(u, j, x), vj , r−
1, y] and Φu,vj are independent.

Note however that Φu,vj and G[u, k, x] are generally dependent when i &= k

Proof. The proposition follows from the fact that for any j, the interaction function Φu,vj does
not appear in G(u, j, x), because node u does not belong to G(u, j, x)), and does not modify the
potential functions of G(u, j, x) in the step (5).

Lemma 4. For every (u, v), and every two real values x, x′

|µu←v(x) − µu←v(x
′)| ≤ |x − x′|. (40)

Proof. From (29) we obtain

µu←v(x) − µu←v(x
′) = max

(

Φu,v(1, 0) −Φu,v(1, 1), x
)

− max
(

Φu,v(0, 0) − Φu,v(0, 1), x
)

− max
(

Φu,v(1, 0) − Φu,v(1, 1), x
′
)

+ max
(

Φu,v(0, 0) − Φu,v(0, 1), x
′
)

.

Using twice the relation maxx f(x) − maxx g(x) ≤ maxx(f(x) − g(x)), we obtain:

µu←v(x) − µu←v(x
′) ≤ max(0, x − x′) + max(0, x′ − x)

= |x − x′|

The other inequality is proved similarly.

Lemma 5. For every u, v ∈ V and every two real values x, x′

|µu←v(x) − µu←v(x
′)| ≤ |Yu,v| (41)
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Proof. Using (29) and (31), we have

µu←v(x) − (Φu,v(1, 1) − Φu,v(0, 1)) = max(Φu,v(1, 0) − Φu,v(1, 1), x)

− max(Φu,vx(0, 0) − Φu,v(0, 1), x).

By using the relation maxx f(x)−maxx g(x) ≤ maxx(f(x)−g(x)) on the right hand side, we obtain

µu←v(x) − (Φu,v(1, 1) −Φu,v(0, 1)) ≤ max(0,−Yu,v).

Similarly

−µu←v(x
′) + (Φu,v(1, 1) − Φu,v(0, 1)) ≤ max(0, Yu,v).

Adding up

µu←v(x) − µu←v(x
′) ≤ |Yu,v|.

The other inequality is also proven similarly.

Lemma 6. Suppose (a, b)-coupling holds. Then,

E|B(r) − B′(r)| ≤ a
∑

1≤j≤d

E|Bj(r − 1) − B′
j(r − 1)| + b

∑

1≤j≤d

E
[

|Bj(r − 1) − B′
j(r − 1)|2

]

. (42)

Proof. Using (11), we obtain:

E|B(r) − B′(r)| = E

[

∣

∣Φu(1) − Φu(0) +
∑

j

µu←vj (Bj(r − 1)) − (Φu(1) − Φu(0)) −
∑

j

µu←vj(B
′
j(r − 1))

∣

∣

]

≤
∑

j

E
∣

∣µu←vj(Bj(r − 1)) − µu←vj(B
′
j(r − 1))

∣

∣

=
∑

j

E

[

E
[

|µu←vj(Bj(r − 1)) − µu←vj (B
′
j(r − 1))|

∣

∣µvj (Bj(r − 2), µvj (B
′
j(r − 2)

]

]

By Lemma 4, we have |µu←vj(Bj(r − 1)) − µu←vj(B
′
j(r − 1))| ≤ |Bj(r − 1) −B′

j(r − 1)|. Also note
from that from equation (32) and (33), |Bj(r − 1)−B′

j(r − 1)| = |µvj (Bj(r − 2))− µvj (B
′
j(r − 2))|;

hence conditional on both µvj (Bj(r − 2) and µvj(B
′
j(r − 2), |Bj(r − 1) − B′

j(r − 1)| is a constant.
Therefore,

E

[

∣

∣µu←vj(Bj(r − 1)) − µu←vj(B
′
j(r − 1))

∣

∣

∣

∣

∣
µvj (Bj(r − 2), µvj (B

′
j(r − 2)

]

≤ |Bj(r − 1) − B′
j(r − 1)| P(µu←vj(Bj(r − 1)) &= µu←vj(B

′
j(r − 1)) | µvj (Bj(r − 2), µvj (B

′
j(r − 2))

(43)

Note that in the (a,b) coupling definition, the probability is over the values of the functions Φu,vj ,
and Φv. By lemma 3, these are independent from µvj (Bj(r − 2) and µvj(B

′
j(r − 2)). Thus, by the

(a,b) coupling assumption, P(µu←vj(Bj(r−1)) &= µu←vj(B
′
j(r−1)) |µvj (Bj(r−2), µvj (B

′
j(r−2)) ≤

a + b|Bj(r − 1) − B′
j(r − 1)|. The result then follows.
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Fix an arbitrary node u in G. Let N (u) = {v1, . . . , vd}. Let dj = |N (vj)| − 1 be the number of
neighbors of vj in G other than u for j = 1, . . . , d. We need to establish that for every two boundary
condition C, C′

E|CE(G, u, r, C) − CE(G, u, r, C′)| ≤ Kαr (44)

We first establish the bound inductively for the case d ≤ ∆ − 1. Let er denote the supremum of
the left-hand side of (44), where the supremum is over all networks G′ with degree at most ∆, such
that the corresponding constant KΦ′ ≤ KΦ, over all nodes u in G with degree |N (u)| ≤ ∆− 1 and
all over all choices of boundary conditions C, C′. Each condition corresponds to a different recursive
inequality for er.

Condition (37) Under (37), we claim that

er ≤ a(∆− 1)er−1 + b(∆− 1)3KΦer−2 (45)

Applying (32) and (33), we have

|Bj(r − 1) − B′
j(r − 1)| ≤

∑

1≤k≤dj

|µvj←vjk
(Bjk(r − 2)) − µvj←vjk

(B′
jk(r − 2))|

Thus,

|Bj(r − 1) − B′
j(r − 1)|2 ≤

(

∑

1≤k≤dj

|µvj←vjk
(Bjk(r − 2)) − µvj←vjk

(B′
jk(r − 2))|

)2

≤ dj

∑

1≤k≤dj

|µvj←vjk
(Bjk(r − 2)) − µvj←vjk

(B′
jk(r − 2))|2

By Lemmas 4 and 5 we have |µvj←vjk
(Bjk(r−2))−µvj←vjk

(B′
jk(r−2))| ≤ |Bjk(r−2)−B′

jk(r−2)|
and |µvj←vjk

(Bjk(r − 2)) − µvj←vjk
(B′

jk(r − 2))| ≤ |Yjk|. Also, dj ≤ ∆− 1.Therefore,

|Bj(r − 1) − B′
j(r − 1)|2 ≤ (∆− 1)

∑

1≤k≤dj

|Bjk(r − 2) − B′
jk(r − 2)| . |Yjk| (46)

By Lemma 3, the random variables |Bjk(r−2)−B′
jk(r−2)| and |Yjk| are independent. We obtain:

E|Bj(r − 1) − B′
j(r − 1)|2 ≤(∆− 1)

∑

1≤k≤dj

E|Bjk(r − 2) − B′
jk(r − 2)| . E|Yjk| (47)

≤(∆− 1)KΦ(
∑

1≤k≤dj

E|Bjk(r − 2) − B′
jk(r − 2)|)

≤(∆− 1)2KΦer−2

where the second inequality follows from the definition of KΦ and the third inequality follows from
the definition of er and the fact that the neighbors vjk, 1 ≤ k ≤ dj of vj have degrees at most ∆−1
in the corresponding networks for which Bjk(r − 2) and B′

jk(r − 2) were defined. Applying Lemma

9



6 and the definition of er, we obtain

E|B(r) − B′(r)| ≤ a
∑

1≤j≤d

E|Bj(r − 1) − B′
j(r − 1)| + b

∑

1≤j≤d

E
[

|Bj(r − 1) − B′
j(r − 1)|2

]

≤ a(∆− 1)er−1 + b(∆− 1)3KΦer−2

This implies (45).
From (45) we obtain that er ≤ Kαr for K = ∆KΦ and α given as the largest in absolute value

root of the quadratic equation α2 = a(∆− 1)α + b(∆− 1)3KΦ. We find this root to be

a =
1

2
(a(∆− 1) +

√

a2(∆− 1)2 + 4b(∆− 1)3KΦ)

≤ a(∆− 1) +
√

b(∆− 1)3KΦ

< 1

where the last inequality follows from assumption (37). This completes the proof for the case that
the degree d of u is at most ∆− 1.

Now suppose d = |N (u)| = ∆. Applying (30) and (31) we have

|B(r) − B′(r)| ≤
∑

1≤j≤d

|µu←vj(Bj(r − 1) − µu←vj(B
′
j(r − 1))|

Applying again Lemma 4, the right-hand side is at most

∑

1≤j≤d

|Bj(r − 1) − B′
j(r − 1)| ≤ ∆er−1

since Bj(r−1) and B′
j(r−1) are defined for vj in a subnetwork Gj = G(u, j, 1), where vj has degree

at most ∆− 1. Thus again the correlation decay property holds for u with ∆K replacing K.

Condition (38) Recall from lemma 6 that for all r, we have:

E|B(r) − B′(r)| ≤ a
∑

1≤j≤d

E|Bj(r − 1) − B′
j(r − 1)| + b

∑

1≤j≤d

E
[

|Bj(r − 1) − B′
j(r − 1)|2

]

.

For all j, |Bj(r − 1) − B′
j(r − 1)| = |

∑

k(µvj←vjk
(Bjk) − µvj←vjk

(B′
jk))|. Moreover, for each j, k,

|µvj←vjk
(Bjk)−µvj←vjk

(B′
jk)| ≤ |Yjk| ≤ KY (the second inequality follows from Lemma 5, the third

by assumption). As a result,

|Bj(r − 1) − B′
j(r − 1)|2 ≤ (∆− 1)KY |Bj(r − 1) − Bj(r − 1)|

We obtain:

er ≤ (a + bKY (∆− 1)) (∆− 1)er−1

Since a(∆− 1) + bKY (∆ − 1)2 < 1, er goes to zero exponentially fast. The same reasoning as
previously shows that this property implies correlation decay.
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Condition (39) Since the network is locally tree-like, all Ye encountered in the cavity recursion
CE(G, u, r) are independent. Another important observation is the following: since (Φe(x, y))x,y∈{0,1}2)
are i.i.d., the random variables Ye are symmetric (Ye and −Ye have the same distribution). The
next step of the proof is to observe that (34) can be rewritten as follows:

µu←vj(z) = Φ3
u←vj

+ max(
Xu←vj − Yu,vj

2
, z) − max(

Xu←vj + Yu,vj

2
, z)

= Φ3
u←vj

+ sign(Y )
(

max(
Xu←vj − |Yu,vj |

2
, z) − max(m

Xu←vj + |Yu,vj |
2

, z)
)

= Φ3
u←vj

+ sign(Yu,vj )h(Xu←vj , |Yu,vj |, z)

where h(x, y, b)
∆
= max(1

2(x− y), b)−max(1
2(x + y), b) is a nondecreasing function of b for y ≥ 0. It

follows that for two real numbers Bj , B′
j ,

µu←vj(Bj) − µu←vj(B
′
j) = sign(Yu,v)

(

h(Xu←vj , |Yu,v|, Bj) − h(Xu←vj , |Yu,v|, B′
j))

and so the sign of µu←vj(Bj)−µu←vj (B
′
j) is the product of the sign of Yu,v and the sign of Bj −B′

j .
For a symmetric random variable Y , ε = sign(Y ) and |Y | are independent, and P (ε = +1) = P (ε =
−1) = 1

2 . For all j = 1, . . . d and k = 1, . . . nj, let

hjk = (h(Xvj←vjk
, |Yvj ,vjk

|, Bjk) − h(Xvj←vjk
, |Yvj ,vjk

|, B′
jk)

and
εjk = sign(Yvj ,vjk

)

For any (j, k),
µvj←vjk

(Bjk(r − 2)) − µvj←vjk
(B′

jk(r − 2)) = εjkhjk

Let F the σ-field generated by the set of random variables {(Bjk(r−1)), (B′
jk(r−1)), (|Yvj ,vjk

|), (Xvj←vjk
)}.

Note that hjk is measurable with respect to F . We obtain:

E|Bj(r − 1) − B′
j(r − 1)|2 = E

[

E

[

∣

∣

∑

1≤k≤dj

εjkhjk)
∣

∣

2
∣

∣

∣
F

]

]

Conditional on F , the inner expectation (which is taken only w.r.t the εjk) is simply the vari-
ance of the random variable

∑

k εkck, where εk are independent variables, and ck = hjk are fixed
constants. The variance is then

∑

k c2
k =

∑

k(hjk)2.
Therefore:

E|Bj(r − 1) − B′
j(r − 1)|2 ≤ E

[

∑

1≤k≤dj

(hjk)
2
]

Using inequalities |hjk| ≤ |Yvj ,vjk
|, |hjk| ≤ |Bjk − B′

jk|, and E|Yvj ,vjk
| ≤ KΦ, we obtain:

E|Bj(r − 1) − B′
j(r − 1)|2 ≤ KΦ

∑

k

E|Bjk(r − 2) − B′
jk(r − 2)|

11



Therefore, using the same notations as previously, this implies:

er ≤ a(∆− 1)er−1 + bKΦ(∆− 1)2er−2

which, given (∆− 1)(a +
√

KΦb) < 1, implies correlation decay at the desired rate.

D.3 Establishing coupling bounds

D.3.1 Coupling Lemma

Theorem 9 details sufficient condition under which the distance-dependent coupling induces corre-
lation decay (and thus efficient decentralized algorithms, vis-à-vis Proposition 3 and Theorem 8).
It remains to show how can we prove coupling bounds. The following simple observation can be
used to achieve this goal.
For any edge (u, v) ∈ G, and any two real numbers x, x′, consider the following events

E+
u←v(x, x′) = {min(x, x′) + Φv(1) − Φv(0) ≥ max(Φ1

u←v,Φ
2
u←v)}

E−
u←v(x, x′) = {max(x, x′) + Φv(1) −Φv(0) ≤ min(Φ1

u←v,Φ
2
u←v)}

Eu←v(x, x′) = E+
u,v(x, x′) ∪ E−

u,v(x, x′)

Lemma 7. If Eu←v(x, x′) occurs, then µu←v(x + Φv(1) − Φv(0)) = µu←v(x′ + Φv(1) − Φv(0)).
Therefore

P (µu←v(x +Φv(1) − Φv(0)) = µu←v(x
′ +Φv(1) −Φv(0)) ≥ P (Eu←v(x, x′))

Proof. The result is obtained directly from representation (29).

Note that Lemma 7 implies that the probability of coupling not occuring P (µu←v(x +Φv(1) −
Φv(0)) &= µu←v(x′ +Φv(1) −Φv(0))) is upper bounded by the probability of (Eu←v(x, x′))c. When
obvious from context, we drop the subscript u ← v. We will often use the following description of
(E(x, x′))c: for two real values x ≥ x′,

(E(x, x′))c = {min(Φ1,Φ2) + Φv(0) − Φv(1) < x < max(Φ1,Φ2) + Φv(0) − Φv(1) + x − x′}

D.3.2 Uniform Distribution: proof of Theorem 1

For a given family of distribution, all remains to do in order to prove a correlation decay theorem
is to compute the coupling parameters a, b for this distribution and apply one form of Theorem 9.
In this section we compute the coupling parameters of the uniform distribution; together with the
second condition of Theorem 9, this proves Theorem 1.

Lemma 8. The network with uniformly distributed rewards described in section 3.1.1 exhibits (a, b)
coupling with

a =
I2

2I1
and b =

1

2I1

12



Proof. Since the distribution of each Φe(x, y) is distributed as a uniform random variable over
[−I2, I2], it follows that for any fixed edge (u, v) ∈ G, Φ1

u←v and Φ2
u←v are i.i.d. random variables

with a triangular distribution with support [−2I2, 2I2] and mode 0. Because Φ1
u←v and Φ2

u←v are
i.i.d., by symmetry we obtain:

P((E(x, x′))c) = 2

∫ 2I2

−2I2

dPΦ1(a1)

∫ 2I2

a1
dPΦ2(a2) P (a1 +Φv(0) − Φv(1) < x < Φv(0) − Φv(1) + a2 + x − x′)

= 2

∫ 2I2

−2I2

dPΦ1(a1)

∫ 2I2

a1
dPΦ2(a2) P (x′ − a2 < Φv(0) − Φv(1) < x − a1)

P (x′ − a2 < Φv(0) − Φv(1) < x − a1) can be upper bounded by a2−a1+x−x′

2I1
, and we obtain:

P (E(x, x′)c) ≤ x − x′

2I1
+

1

I1

∫ 2I2

−2I2

dPΦ1(a1)

∫ 2I2

a1
dPΦ2(a2)(a2 − a1)

Note that dPΦ2(a2) = 1
4I2

2
(a2 + 2I2)d(a2) for a2 ≤ 0, and dPΦ2(a2) = 1

4I2
2
(2I2 − a2)d(a2) for

a2 ≥ 0; identical expressions hold for dPΦ1(a1). Therefore, for a1 ≥ 0,

∫ 2I2

a1
dPΦ2(a2)(a2 − a1) =

1

4I2
2

∫ 2I2

a1
(2I2 − a2)(a2 − a1) d(a2)

=
1

4I2
2

(

−
∫ 2I2

a1
(2I2 − a2)2d(a2) + (2I2 − a1)

∫ 2I2

a1
(2I2 − a2)d(a2)

)

=
1

4I2
2

(

− 1

3
(2I2 − a1)3 +

1

2
(2I2 − a1)

3
)

=
1

24I2
2

(2I2 − a1)3

Similarly, for a1 ≤ 0,

∫ 2I2

a1
dPΦ2(a2)(a2 − a1) = −a1 +

1

24I2
2

(a1 + 2I2)
3

The final integral is therefore equal to:

∫ 2I2

−2I2

dPΦ1(a1)

∫ 2I2

a1
dPΦ2(a2)(a2 − a1)

=
1

4I2
2

(

∫ 0

−2I2

(

(a1 + 2I2)(−a1 +
1

24I2
2

(a1 + 2I2)
3
)

d(a1) +

∫ 2I2

0

1

24I2
2

(2I2 − a1)4d(a1)
)

=
1

4I2
2

(24

15
I3
2 +

4

15
I3
2

)

=
7

15
I2

Finally,

P ((E(x, x′)c) ≤ 7I2

15I1
+

|x − x′|
2I1

≤ I2

2I1
+

|x − x′|
2I1

Therefore, the system exhibits coupling with parameters ( I2
2I1

, 1
2I1

).
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Note that for all edges, |Ye| ≤ 4I2, so that the condition β(∆ − 1)2 < 1 implies I2
2I1

(∆ − 1) +
4I2
2I1

(∆− 1)2 < 1.

D.3.3 Gaussian distribution: proof of Theorem 2

In this section, we compute the coupling parameters for Gaussian distributed reward functions.
Rather than considering only the assumptions of Theorem 2, we place ourselves in a more general
framework; the proof will follow from the application of the first form of Theorem 9 and a special
case of the computation detailed below (see corollary 2).
Assume that for any edge e = (u, v) the value functions (Φu,v(0, 0),Φu,v(0, 1),Φu,v(1, 0),Φu,v(1, 1))
are independent, identically distributed four-dimensional Gaussian random variables, with mean
µ = (µi)i∈{00,01,10,11}, and covariance matrix S = (Sij)i,j∈{00,01,10,11}. For every node v ∈ V ,
suppose Φv(1) = 0 and that Φv(0) is a Gaussian random variable with mean µp and standard
deviation σp. Moreover, suppose all the Φv and Φe are independent for v ∈ V , e ∈ E. Let

σ2
1 = S10,10 − 2S10,11 + S11,11 + σ2

p σ2
2 =S00,00 − 2S00,01 + S01,01 + σ2

p

ρ = (σ1σ2)
−1(S00,10 − S00,11 − S01,10 + S01,11 + σ2

p) C =
σ2

2 − σ2
1

√

(σ2
1 + σ2

2)
2 − 4ρ2σ2

1σ
2
2

σ2
X = σ2

1 + σ2
2 + 2ρσ1σ2 σ2

Y =σ2
1 + σ2

2 − 2ρσ1σ2

Lemma 9. Assume C < 1. Then the network exhibits coupling with parameters (a, b) equal to:

a =
1

π
arctan

(

√

1

1 − C2

σY

σX

)

+

√

2

π

|µ00 + µ11 − µ10 − µ01|
σX

b =

√

2

π

1

σX

Corollary 2. Suppose that for each e,(Φe(0, 0),Φe(0, 1),Φe(1, 0),Φe(1, 1)) are i.i.d. Gaussian vari-

ables with mean 0 and standard deviation σe. Let β =

√

σ2
e

σ2
e+σ2

p
Then a ≤ β and bKΦ ≤ β.

Proof. Under the conditions of corollary 2, we have σ2
Y = 4σ2

e , σ
2
X = 4σ2

p + 4σ2
e , and C = 0. Note

also that KΦ ≤ 2σe By Lemma 9, the network exhibits coupling with parameters

a =
1

π
arctan

(

√

σ2
e

σ2
e + σ2

p

)

≤ 1

π
β ≤ β

b =

√

1

2π

1
√

σ2
e + σ2

p

and so, bKΦ ≤
√

2

π
β ≤ β

Remark that when σe → 0, β → 0 and correlation decay appears;

Proof of Lemma 9 . Fix an edge (u, v) in E; for simplicity, in the rest of this section denote Φ̄1 =

Φ1
u←v +Φv(0)−Φv(1) and Φ̄2 = Φ2

u←v +Φv(0)−Φv(1). It follows that (Φ
1
,Φ

2
) follows a bivariate

14



Gaussian distribution with mean (µ1, µ2):

µ1 = µ10 − µ11 + µp and µ2 = µ00 − µ01 + µp

and covariance matrix

SA =

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

with σ1, σ2, ρ defined as previously. With a slight abuse of notation, let X = Φ
1
+Φ

2
, Y = Φ

2−Φ1
.

Then, (X,Y ) is a bivariate Gaussian vector with means E[X] = µ1 + µ2 and E[Y ] = µ2 − µ1,

standard deviations σX , σY and correlation C as defined previously. Denote also X
∆
= X − E[X]

and Y
∆
= Y − E[Y ] the centered versions of X and Y . Consider two real numbers x ≥ x′, and let

(b, t) be the two real numbers such that x = b + t/2, x′ = b − t/2. By the coupling lemma, as well

as the definitions of b, t,Φ
1

and Φ
2
, we have

(E(x, x′))c = {min(Φ
1
,Φ

2
) − t/2 < b < max(Φ

1
,Φ

2
) + t/2}

The first step of the proof consists in rewriting the event (E(x, x′))c in terms of the variables X,Y :

Lemma 10.

(E(x, x′))c = {|Y | ≥ (|X − 2b| − t)}

Proof.

(E(x, x′))c ={min(Φ
1
,Φ

2
) − t/2 < b < max(Φ

1
,Φ

2
) + t/2}

={Φ1 − t/2 < b < Φ
2
+ t/2,Φ

1 ≤ Φ
2} ∪ {Φ2 − t/2 < b < Φ

1
+ t/2, Y ≤ 0,Φ

2 ≤ Φ
1}

={2Φ1 − t < 2b < 2Φ
2
+ t,Φ

1 ≤ Φ
2} ∪ {2Φ2 − t < 2b < 2Φ

1
+ t,Φ

2 ≤ Φ
1}

={X − Y − t < 2b < X + Y + t, Y ≥ 0} ∪ {X + Y − t < 2b < X − Y + t, Y ≤ 0}
={(X − 2b) − |Y | − t < 0 < (X − 2b) + |Y | + t}
={|Y | ≥ (X − 2b − t)} ∩ {|Y | ≥ (2b − X − t)}
={|Y | ≥ |X − 2b| − t}

For any b and t ≥ 0, let S(t) = {x, y : |y| ≥ |x| − t}, and for any real x, let S(t, y) = {x : |y| ≥
|x| − t}. Note S(t, y) is symmetric and convex in x for all y. Using the lemma, we obtain:

P((E)c(x, x′)) =
1

2πσxσy

√
1 − C2

∫

S(t)
e
− 1

2(1−C2)
(
(x−µ1−µ2+2b)2

σ2
x

+
(y−µ2+µ1)2

σ2
y

−2C
(x−µ1−µ2+2b)(y+µ2−µ1)

σxσy
)
dxdy

=
1

2πσxσy

√
1 − C2

∫

y
e
− 1

2(1−C2)

(y−µ2+µ1)2

σ2
y g(y)dy (48)
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where:

g(y) =

∫

x∈S(t,y)
e
− 1

2(1−C2)
(
(x−µ1−µ2+2b)2

σ2
x

−2C
(x−µ1−µ2+2b)(y−µ2+µ1)

σxσy
)
dx

Let x̃b = (x−µ1−µ2+2b)
σx

and ỹ = (y−µ2+µ1)
σy

. Then:

g(y) = e
C2

2(1−C2)
ỹ2

∫

x∈S(t,y)
e
− 1

2(1−C2)
(x̃b−Cỹ)2

dx

Now, x̃b − Cỹ =
x−µ1−µ2+2b−Cσx(y−µ2+µ1)

σy

σx
. Recall Anderson’s inequality [?]: for an arbitrary set S

and vector z we denote S + z the set {(x + z) : x ∈ S}. Let γ be a centered Gaussian measure on
Rk, and S be a convex, symmetric subset of Rk. Then, for all z, γ(S) ≥ γ(S + z). Since S(t, y) is

a convex symmetric subset, by setting 2b = µ1 + µ2 + Cσx(y−µ2+µ1)
σy

, it follows that

g(y) ≤ e
C2

2(1−C2)
ỹ2

∫

x∈S(t,y)
e
− 1

2σ2
x(1−C2)

x2

dx

Injecting that bound in equation (48), we obtain:

P((E)c(x, x′)) ≤ 1

2πσxσy

√
1 − C2

∫

y
e
− 1

2(1−C2)

(y−µ2+µ1)2

σ2
y

(

e
C2

2(1−C2)

(y−µ2+µ1)2

σ2
y

∫

x∈S(t,y)
e
− 1

2σ2
x(1−C2)

x2

dx

)

dy

≤ 1

2πσxσy

√
1 − C2

∫

S(t)
e
− 1

2(1−C2)
( x2

σ2
x

+(1−C2)
(y−µ2+µ1)2

σ2
y

)
dxdy

Finally, note that the triangular inequality, for any α we have S(t) ⊂ Sα(t)
∆
= {(x, y) : |y − α| ≥

|x| − t − |α|}. We obtain:

P((E)c(x, x′)) ≤ 1

2πσxσy

√
1 − C2

∫

Sµ2−µ1 (t)
e
− 1

2(1−C2)
( x2

σ2
x

+(1−C2)
(y−µ2+µ1)2

σ2
y

)
dxdy

≤ 1

2πσxσy

√
1 − C2

∫

S(t+|µ2−µ1|)
e
− 1

2(1−C2)
( x2

σ2
x

+(1−C2) y2

σ2
y
)
dxdy

where the second inequality follows from a simple change of variable. Let t′ = t + |µ2 −µ1| Finally,
we decompose S(t′) as the union of two sets: S(t) = Sint(T ) ∪ Sout(t), where:

Sint(t
′) ={(X,Y ) : |X| < t′}

Sout(t
′) ={(X,Y ) : |X| ≥ t′ and |Y | ≥ (|X| − t′)}

Sint(t
′) ∩ Sout(t

′) =∅

We have:

P(Sint(t
′)) ≤ 2t′

√

2π(1 − C2)σx
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and, by symmetry of Sout(t′) in X and Y ,

P(Sout(t
′)) =4P({(X,Y ) : X ≥ t, Y ≥ 0, Y ≥ X − t})

=
2

πσxσy

√
1 − C2

∫

{(X,Y ):X≥t,Y ≥0,Y ≥X−t}
e
− 1

2(1−C2)
( x2

σ2
x

+(1−C2) y2

σ2
y

)
dxdy

Using the change of variables (x′, y′) = ( X−t√
1−C2σx

, Y
σy

),we get:

P(Sout(t
′)) =

2

π

∫

{(x′,y′):x′>0,y′>0,y′≥σx
√

1−C2

σy
x′}

(

e
−(x′+ t′√

1−C2 σx
)2−y′2)

dx′dy′

Since (x′ + t′√
1−C2 σx

)2 ≥ x′2, it follows that:

P(Sout(t
′)) ≤ 2

π

∫

{(x′,y′):x′>0,y′>0,y′≥σx
√

1−C2

σy
x′}

(

e−x′2−y′2
)

dxdy

By using a radial change of variables (x′, y′) = (r cos(θ), r sin(θ)) we can compute exactly the
expression above, and find:

P(Sout(t
′)) ≤ 2

π

∫

{(r,θ):r>0,arctan(σx
√

1−C2

σy
)≤θ≤π

2 }
e−r2

rdrdθ

=
1

π
arctan(

σy

σx

√
1 − C2

) ≤ 1

π

σy

σx

√
1 − C2

P((E)c(x, x′)) ≤
(

1

π
arctan(

σy

σx

√
1 − C2

) +

√

2

π(1 − C2)

|µ2 − µ1|
σx

)

+

√

2

π(1 − C2)

t

σx
(49)

which gives us the desired bounds on (a, b).

E Proofs of results in section 3.2

E.1 Concentration argument for Theorem 3

We now return to the proof of Theorem 3. Recall the description of the algorithm in the end of
Section 7.1. Specifically, we run CE(t, ε) algorithm for some even t to be specified later. Let I be
the set of nodes i in G0 such that C−

G0
(i, t) > 0. Since t is even, by Lemma 1, I ⊂ I∗0 , where we recall

that I∗0 is the largest weighted independent set in G0. Thus we need to bound |W (I∗) − W (I∗0 )|
and W (I∗0 \ I) and show that both quantities are small. Let ∆V0 be the set of nodes in G which
are not in G0. Trivially, |W (I∗) − W (I∗0 )| ≤ W (∆V0). We have E[∆V0] = δn, and since the nodes
were deleted irrespectively of their weights, then E[W (∆V0)] = δn.

To analyze W (I∗0 \ I), observe that by (second part of) Proposition 7, for every node i, P(i ∈
I∗0 \ I) ≤ 4(1 − δ)t ≡ δ1. Thus E|I∗0 \ I| ≤ δ1n. In order to obtain a bound on W (I∗0 \ I) we
obtain a crude bound on the largest weight of a subset with cardinality δ1n. Fix a constant C
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and consider the set VC of all nodes in G0 with weights greater than C. We have E[W (VC)] ≤
(C + E[W − C|W > C]) exp(−C)n = (C + 1) exp(−C)n, where W is a generic random variable
with exp(1) distribution. Then remaining nodes have a weight at most C. Therefore,

E[W (I∗0 \ I)] ≤ Cδ1n + (C + 1) exp(−C)n.

We conclude

E[|W (I∗) − W (I)|] ≤ δn + Cδ1n + (C + 1) exp(−C)n. (50)

Now we obtain a lower bound on W (I∗). Consider the standard greedy algorithm for generating
an independent set: take arbitrary node, remove neighbors, repeat. It is well known and simple to
see that this algorithm produces an independent set with cardinality at least n/4, since the largest
degree is at most 3. Since the algorithm ignores the weights, then also the expected weight of this
set is at least n/4. By Chebyshev’s inequality

P(W (I∗) < n/8) ≤ n

(n/8 − n/4)2
= 64/n.

We now summarize the results.

P(
W (I)

W (I∗)
≤ 1 − ε) ≤ P(

W (I)

W (I∗)
≤ 1 − ε,W (I∗) ≥ n/8) + P(W (I∗) < n/8)

≤ P(
|W (I∗) − W (I)|

W (I∗)
≥ ε,W (I∗) ≥ n/8) + 64/n

≤ P(
|W (I∗) − W (I)|

n/8
≥ ε) + 64/n

≤ δ + 4C(1 − δ)t + (C + 1) exp(−C)

ε/8
+ 64/n,

where we have used Markov’s inequality in the last step and δ1 = 4(1 − δ)t. Thus it suffices to
arrange δ and C so that the first ratio is at most ε/2 and assuming, without the loss of generality,
that n ≥ 128/ε, we will obtain that the sum is at most ε. It is a simple exercise to show that by
taking δ = O(ε2), t = O(log(1/ε)/ε2) and C = O(log(1/ε)), we obtain the required result. This
completes the proof of Theorem 3.

E.2 Proofs of Theorems 4,

In this section we present a proof of Theorems 4.

Proof of Theorem 4. The mixture of ∆ exponential distributions with rates αj , 1 ≤ j ≤ ∆ and
equal weights 1/∆ can be viewed as first randomly generating a rate α with the probability law
P(α = αj) = 1/∆ and then randomly generating exponentially distributed random variable with
rate αj , conditional on the rate being αj .

For every subgraph H of G, node i in H and j = 1, . . . ,∆, define M j
H(i) = E[exp(−αj CH(i))],

M−,j
H (i, t) = E[exp(−αj C−

H(i, t))] and M+,j
H (i, t) = E[exp(−αj C+

H(i, t))], where CH(i)), C+
H(i, t))

and C−
H(i, t)) are defined as in Section 7.1.
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Lemma 11. Fix any subgraph H, node i ∈ H with NH(i) = {i1, . . . , ir}. Then

E[exp(−αjCH(i))] = 1 −
∑

1≤k≤m

αj

αj + αk
E[exp(−

∑

1≤l≤r

αkCH\{i,i1,...,il−1}(il))]

E[exp(−αjC
+
H(i, t))] = 1 −

∑

1≤k≤m

αj

αj + αk
E[exp(−

∑

1≤l≤r

αkC
+
H\{i,i1,...,il−1}

(il, t − 1))]

E[exp(−αjC
−
H(i, t))] = 1 −

∑

1≤k≤m

αj

αj + αk
E[exp(−

∑

1≤l≤r

αkC
−
H\{i,i1,...,il−1}

(il, t − 1))]

Proof. Let α(i) be the random rate associated with node i. Namely, P(α(i) = αj) = 1/∆. We
condition on the event

∑

1≤l≤r CH\{i,i1,...,il−1}(il) = x. As CH(i) = max(0,Wi − x), we obtain:

E[−αjCH(i)|x] =
1

∆

∑

k

E[−αjCH(i)|x, α(i) = αk]

=
1

∆

∑

k

(

P(Wi ≤ x|α(i) = αk)

+P(Wi > x|α(i) = αk)E[exp(−αj(Wi − x))|Wi > x,α(i) = αk]
)

=
1

∆

∑

k

(

1 − exp(−αkx) + exp(−αkx)
αk

αj + αk

)

= 1 − 1

∆

∑

k

αj

αj + αk
exp(−αkx)

Thus,

E[−αjCH(i)] = 1 − 1

∆

∑

k

αj

αj + αk
E[exp(−

∑

1≤l≤r

αkCH\{i,i1,...,il−1}(il))]

The other equalities follow identically.

By taking differences, we obtain

M−,j
H (i, t) − M+,j

H (i, t) =

1

∆

∑

k

αj

αj + αk

(

E[
∏

1≤l≤r

exp(−αkC
+
H\{i,i1,...,il−1}

(il, t − 1))] − E[
∏

1≤l≤r

exp(−αkC
−
H\{i,i1,...,il−1}

(il, t − 1))]

)

We now use identity

∏

1≤l≤r

xl −
∏

1≤l≤r

yl =
(

∏

1≤k≤l−1

xk

)(

∏

l+1≤k≤r

yk

)

∑

1≤l≤r

(xl − yl),

which further implies
∣

∣

∣

∏

1≤l≤r

xl −
∏

1≤l≤r

yl

∣

∣

∣
≤

∑

1≤l≤r

|xl − yl|,
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when maxl |xl|, |yl| < 1. By applying this inequality with xl = exp(−αkC
+
H\{i,i1,...,il−1}

(il, t − 1))

and yl = exp(−αkC
−
H\{i,i1,...,il−1}

(il, t − 1)), we obtain

|M−,j
H (i, t) − M+,j

H (i, t)| ≤ 1

∆

∑

1≤k≤m

αj

αj + αk

∑

1≤l≤r

|M−,k
H\{i,i1,...,il−1}

(il, t − 1) − M+,k
H\{i,i1,...,il−1}

(il, t − 1)|

This implies

|M−,j
H (i, t) − M+,j

H (i, t)| ≤ r

∆

∑

1≤k≤m

αj

αj + αk
max
1≤l≤r

|M−,k
H\{i,i1,...,il−1}

(il, t − 1) − M+,k
H\{i,i1,...,il−1}

(il, t − 1)|(51)

For any t ≥ 0 and j, define et,j as follows

et,j = sup
H⊂G,i∈H

|M−,j
H (i, t) − M+,j

H (i, t)| (52)

By taking maximum on the right and left hand side successively, inequality (51) implies

et,j ≤
r

∆

∑

1≤k≤m

αj

αj + αk
et−1,k

For any t ≥ 0, denote et the vector of (et,1, . . . , et,m). Denote M the matrix such that for all (j, k),
Mj,k = r

∆
αj

αj+αk
. We finally obtain

et ≤ Met−1.

Therefore, if M t converges to zero exponentially fast in each coordinate, then also et converges
exponentially fast to 0. Following the same steps as the proof of theorem 3, this will imply that
for each node, the error of a decision made by CE( t, 0) is exponentially small in t . Note that
r
∆ ≤ 1. Recall that αj = ρj . Therefore, for each j, k, we have Mj,k ≤ ρj

ρj+ρk . It then suffices to

show that M t
∆ converges to zero exponentially fast, where where M∆ is a ∆×∆ matrix defined by

Mj,j = 1/2,Mj,k = 1, j > k and Mj,k = (1/ρ)k−j , k > j, for all 1 ≤ j, k ≤ ∆.
Proof of theorem 4 will thus be completed with the proof of the following lemma:

Lemma 12. Under the condition ρ > 17, there exists δ = δ(ρ) < 1 such that the absolute value of
every entry of M t

∆ is at most δt(ρ).

Proof. Let ε = 1/ρ. Since elements of M are non-negative, it suffices to exhibit a strictly positive
vector x = x(ρ) and 0 < θ = θ(ρ) < 1 such that M ′x ≤ θx, where M ′ is transpose of M . Let x be
the vector defined by xk = εk/2, 1 ≤ k ≤ ∆. We show that for any j,

(M ′x)j ≤ (1/2 + 2

√

ε

1 − ε
)xj

It is easy to verify that when ρ > 17, that is ε < 1/17, (1/2 + 2
√

ε
1−ε) < 1, and the proof would be
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complete. Fix 1 ≤ j ≤ ∆. Then,

(M ′x)j =
∑

1≤k≤j−1

Mk,j xk + 1/2xj +
∑

j+1≤k≤∆

Mk,j xk

=
∑

1≤k≤j−1

εj−kεk/2 + 1/2εj/2 +
∑

j+1≤k≤∆

εk/2

Since xj = εj/2, we have

(Mx)j
xj

≤
∑

1≤k≤j−1

ε(j−k)/2 + 1/2 +
∑

j+1≤k≤∆

ε(k−j)/2

= 1/2 +
∑

1≤k≤j−1

εk/2 +
∑

1≤k≤∆−j

εk/2 ≤ 1/2 +
2ε1/2

1 − ε1/2

This completes the proof of the lemma and of the theorem.

E.3 Hardness Result (joint work with David Goldberg)

We turn to our third and last result - the hardness of approximating W (I∗) when the weights are
exponentially distributed and the degree of the graph is large. We need to keep in mind that since
we dealing with instances which are random (in terms of weights) and worst-case (in terms of the
underlying graph) at the same time, we need to be careful as to the notion of hardness we use. In
fact we will prove a result using the standard (non-average case) notions of complexity theory.

Theorem 10. There exist ∆0 and c∗1, c
∗
2 such that for all ∆ ≥ ∆0 the problem of computing

E[W (I∗)] to within a multiplicative factor ρ = ∆/(c∗1 log ∆2c∗2
√

log ∆) for graphs with degree at most
∆ is NP-complete.

Remark : One can in principle compute a concrete ∆0 such that for all ∆ ≥ ∆0 the claim of
the theorem holds. But computing such ∆0 explicitly does not seem to offer much insight. We note
that in the related work by Trevisan [?], no attempt is made to compute a similar bound either.

Proof of Theorem 10. We only provide a sketch of the proof. Given a graph G with degree bounded
by ∆, let I denote (any) maximum cardinality independent set, and let I∗ denote the unique
maximum weight independent set corresponding to i.i.d. weights with E(1) distribution. We make
use of the following result due to Trevisan [?].

Theorem 11. There exist ∆0 and c∗ such that for all ∆ ≥ ∆0 the problem of approximating
the largest independent set in graphs with degree at most ∆ to within a factor ρ = ∆/2c∗

√
log ∆ is

NP-complete.

Our main technical result is the following proposition.
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Proposition 9. For every graph G with n large enough,

1

3 log∆
≤ E[|I∗|]

|I|
≤ 1

This in combination with Theorem 11 leads to the desired result.

Proof sketch. Let W (1) < W (2) < · · · < W (n) be the ordered weights associated with our graph G.
Fix δ, which we later will choose to be 1/(3 log ∆). let m = 1δ|I|2. Observe that the event |I∗| <
δ|I| implies that

∑

n−m+1≤j≤n W (j) ≥
∑

i∈I∗ Wi ≥
∑

i∈I Wi. The exponential distribution implies
E[W (j)] = H(n)−H(n− j), where H(k) is the harmonic sum 1 + 1/2 + . . . + 1/k = log(k) + O(1).
Thus

∑

n−m+1≤j≤n

E[Wj] =
∑

n−m+1≤j≤n

(H(n) − H(n − j))

= mH(n) −
∑

j≤m−1

H(j)

≤ mH(n) − m log(m) + O(m)

= δ|I| log n

δ|I|
+ O(m)

≤ δ|I|(log ∆ +1

δ
+ O(1)),

where a straightforward bound |I| ≥ n/(∆+1) is used. It is easy to check that for δ = 1/(C log ∆)
with sufficiently large universal constant C, we have δ(O(1) + log ∆+1

δ ) < 1 implying

∑

n−m+1≤j≤n

E[Wj ] − E[W (I)] ≤ |I|(δ(O(1) + log
∆ +1

δ
) − 1) < −δ2|I|,

for some constant δ2 = δ2(∆). Our next step is to use standard methods to show that
∑

n−m≤j≤n Wj

is concentrated around its mean. This together with the previous bound implies that the probability
of the event

∑

n−m≤j≤n Wj > W (I) converges to zero at the rate at least O(1/n). This is used in

the final step to argue that E[W (I∗)]/|I| ≥ 1
O(log(∆)) .
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