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Abstract

We introduce Dimple, a fully open-source API for probabilistic modeling. Dimple
allows the user to specify probabilistic models in the form of graphical models,
Bayesian networks, or factor graphs, and performs inference (by automatically
deriving an inference engine from a variety of algorithms) on the model. Dimple
also serves as a compiler for GP5, a hardware accelerator for inference.

1 Introduction

To a large extent, probabilistic graphical models unify a great number of models from machine
learning, statistical text processing, vision, bioinformatics, and many other fields concerned with the
analysis and understanding of noisy, incomplete, or inconsistent data.

Graphical models alleviate the complexity inherent to large dimensional statistical models (the so-
called curse of dimensionality) by dividing the problem into a series of logically (and statistically)
independent components. By factoring the problem into subproblems with known and simple inter-
dependencies, and by adopting a common language to describe each subproblem, one can consider-
ably simplify the task of creating complex Bayesian models. Modularity can be taken advantage of
further by leveraging this modeling hierarchy over several levels (e.g. a submodel can also be de-
composed into a family of sub-submodels). Finally, by providing a framework which abstracts the
key concepts underlying classes of models, graphical models allow the design of general algorithms
which can be efficiently applied across completely different fields, and systematically derived from
a model description.

These observations have driven people towards developing computer languages and APIs to nat-
urally specify complex probabilistic models, and automatically derive a corresponding inference
engine (with limited input from the user), drastically reducing the prototyping time for probabilistic
modeling. Many such tools have appeared over the last few years; examples include Infer.NET [3],
the Bayes Net Toolbox [4], BUGS, and Church[2] 1.

2 Dimple

Dimple is an open source API which allows the user to construct models that can be written as factor
graphs. The model specification is separated from the inference engine. Models can then be defined
without a priori consideration of which algorithm to use (or even knowing how present algorithms
work). The modular architecture makes the development of new inference engines and schedulers
easy, and enables the developer of a new algorithm to immediately run and test it on the relevant
examples and target benchmarks (Dimple provides a number of such benchmarks). Dimple fully
supports undirected and directed factors, discrete and continuous variables, and has growing support

∗Emails are first.last@analog.com. All authors are at Lyric Labs at Analog Devices.
1Stochastic Matlab and Church belong in fact to probabilistic programming, an even richer class of proba-

bilistic models, where the model is described by an arbitrary computer program with calls to elementary random
procedures.
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for parameter estimation (including generalized Baum-Welch). It supports infinite streaming chains
but does not yet support the more general infinite graphs needed to support nonparametric Bayesian
statistics, although some preliminary work has been done to integrate Stochastic MATLAB[7] (a
variant of Church) and Dimple.

A crucial feature of the Dimple architecture is that it is very easy for anyone to add new inference
engines and apply them to any model expressible by Dimple. It is also very easy to write a new
model and choose to use any of the solvers (or increasingly, to mix and match solvers).

A second crucial feature of Dimple is that it serves as a front-end and compiler for hardware-
accelerated inference. In parallel to developing Dimple, Analog Devices, Inc. is also a hardware
company aiming to build general purpose accelerators for machine learning and probabilistic pro-
gramming in particular. A result of those efforts is a special purpose chip called GP5 - an accelerator
for sum-product and min-sum belief propagation in discrete factor graphs.

At the time of writing this document, Dimple and Infer.NET have similar features: an ability to ex-
press finite graphical models, multiple inference engines (including Gibbs and Sum Product), sup-
port for both discrete and continuous variables, and support for both directed and undirected graphs.
Unlike Infer.NET, Dimple does not yet provide an Expectation Propagation inference engine, but the
architecture would support such an addition. On the other hand, Dimple does provide advantages
over Infer.NET, such as giving users the option to create their own inference engines and custom
schedules (the order in which messages are passes or samples are generated). Dimple supports other
solvers not present in Infer.net : particle belief propagation, sample based belief propagation, among
others. Dimple and Church differ more deeply. Church can be used to model a wider range of prob-
abilistic models that include infinite probabilistic graphical models, but also more complex models.
Dimple, on the other hand, can provide more types of inference engines because of the very same
restrictions on the class of models it can describe. In some cases, Dimple handles undirected factors
and hard constraints (such as parity checks) more naturally than Church does.

2.1 Code example

If data is encoded with a Low Density Parity Check code and then corrupted, one can try to recover
it using belief propagation. We provide an example of MATLAB Dimple code for decoding. A
typical implementation from scratch might take a thousand lines of code [5].

1 % P a r i t y Check Ma t r i x :
M = [1 1 1 0 0 0 ; 1 0 1 0 1 0 ; 0 0 1 1 0 1 ] ;

3 %I n s t a n t i a t e a F a c t o r Graph
My Fac tor Graph = F a c t o r G r a p h ( ) ;

5 My Factor Graph . S o l v e r = S u m P r o d u c t ;
%C r e a t e random v a r i a b l e s wi th a domain o f [0 1 ]

7 My Var i ab l e s = B i t ( s i z e (M, 2 ) , 1 ) ;
%The f a c t o r f u n c t i o n

9 x o r D e l t a = @( b i t s ) mod ( sum ( b i t s ) , 2 ) == 0 ;
%I t e r a t e ove r check e q u a t i o n s and add c o n s t r a i n t s from t h e check m a t r i x .

11 f o r i =1 : s i z e (M, 1 )
v a r i a b l e i n d i c e s = f i n d (M( i , : ) ) ;

13 My Factor Graph . a d d F a c t o r ( x o r D e l t a , My Var i ab l e s ( v a r i a b l e i n d i c e s ) ) ;
end

15 %S e t t h e p r i o r s
My Var i ab l e s = a v e c t o r r e p r e s e n t i n g o b s e r v e d d a t a ;

17 %Run i n f e r e n c e
My Fac tor Graph . s o l v e ( )

19 %D i s p l a y t h e p o s t e r i o r d i s t r i b u t i o n
d i s p ( My Var i ab l e s . B e l i e f )

2.2 Selected features

In this section we will highlight some of Dimple’s features. A more comprehensive set of features
can be found in the documentation found on GitHub. [1]
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2.2.1 Modeler Features

• Easy specification of undirected and directed potentials. Options include:

– Dense factors: any arbitrary function of the variables connected to the factor. The
following code generates a simple graph with two variables, a and b and a factor
function f(a, b) = e(−|a−b]) where a and b ∈ {1, 2, ...10} and the prior on a defines
P (a = 10) = 1.

%C r e a t e F a c t o r Graph
2 fg = F a c t o r G r a p h ( ) ;

%D ef in e f u n c t i o n t o p e n a l i z e d i s t a n c e
4 f = @( x , y ) exp(− abs ( x−y ) ) ;

%c r e a t e two v a r i a b l e s
6 a = D i s c r e t e ( 1 : 1 0 ) ;

b = D i s c r e t e ( 1 : 1 0 ) ;
8 %Add an u n d i r e c t e d f a c t o r e n c o u r a g i n g sameness between t h e

%v a r i a b l e s .
10 fg . a d d F a c t o r ( f , a , b ) ;

%S e t a ha rd i n p u t f o r a (100% c e r t a i n t y o f a 10)
12 a . I n p u t = [ z e r o s ( 1 , 9 ) 1 ] ;

%Run i n f e r e n c e
14 fg . s o l v e ( ) ;

%S p i t o u t t h e p o s t e r i o r b e l i e f o f b
16 d i s p ( b . B e l i e f ’ ) ;

Here we see the resulting posterior probability of b after running sum product.

1 ans =

3 0 .0001
0 .0002

5 0 .0006
0 .0016

7 0 .0043
0 .0116

9 0 .0315
0 .0856

11 0 .2326
0 .6321

– Sparse factors: specify only those factor function values which are nonzero. Improves
performance by orders of magnitude when some variables are deterministic functions
of others, for example. The following code defines a factor function f(a, b) = (a =
b), enforcing the constraint that a = b with equal weight for every value.

1 %C r e a t e F a c t o r Graph
fg = F a c t o r G r a p h ( ) ;

3 %C r e a t e two v a r i a b l e s
a = D i s c r e t e ( 1 : 4 ) ;

5 b = D i s c r e t e ( 1 : 4 ) ;
%S p e c i f y t h e domain i n d i c e s o f non−z e r o e n t r i e s i n t h e f a c t o r

t a b l e .
7 i n d i c e s = [0 0 ;

1 1 ;
9 2 2 ;

3 3 ] ;
11 %s p e c i f y t h e w e i g h t s f o r each row i n t h e i n d e x t a b l e

w e i g h t s = [1 1 1 1 ] ;
13 %C r e a t e t h e f a c t o r

fg . a d d F a c t o r ( i n d i c e s , we igh t s , a , b ) ;
15 %S e t a ha rd i n p u t
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a . I n p u t = [ z e r o s ( 1 , 3 ) 1 ] ;
17 %Run i n f e r e n c e

fg . s o l v e ( ) ;
19 %P r i n t o u t p o s t e r i o r

d i s p ( b . B e l i e f ) ;

After running inference, the following result is produced.

ans =
2

0 .0000 0 .0000 0 .0000 1 .0000

– Nested factor graphs: once created, a factor graph can be instantiated within larger
factor graphs, increasing code modularity, modifiability, reusability, and readability,
in a paradigm similar to object oriented programming. The following code snippet
creates a graph that defines a soft 4-bit xor. The parent graph nests this graph twice to
create a toy error correcting code with two constraints over 4 variables each.

1 %%%%%%% C r e a t e t h e n e s t e d graph
b = B i t ( 4 , 1 ) ;

3 f o u r B i t X o r = F a c t o r G r a p h ( b ) ;
c = B i t ( ) ;

5 f o u r B i t X o r . a d d F a c t o r ( @xorDelta , [ b ( 1 : 2 ) ; c ] ) ;
f o u r B i t X o r . a d d F a c t o r ( @xorDelta , [ b ( 3 : 4 ) ; c ] ) ;

7

%%%%%%% C r e a t e t h e p a r e n t g raph
9 fg = F a c t o r G r a p h ( ) ;

a = B i t ( 6 , 1 ) ;
11 fg . a d d F a c t o r ( f o u r B i t X o r , a ( [ 1 2 4 5 ] ) ) ;

fg . a d d F a c t o r ( f o u r B i t X o r , a ( [ 2 3 4 6 ] ) ) ;
13

%S e t i n p u t s and run i n f e r e n c e
15 a . I n p u t = ones ( 6 , 1 ) ∗ . 9 ;

fg . s o l v e ( ) ;
17 d i s p ( a . B e l i e f ’ ) ;

After running inference, we see that all bits are pulled more strongly towards 1.
Graphs can be nested recursively, although not infinitely.

1 ans =

3 0 .9654 0 .9886 0 .9654 0 .9886 0 .9654 0 .9654

• Vectorized Graph Creation: Achieving fast speeds with MATLAB requires avoiding loops.
Dimple provides the ability to create large n-dimensional collections of variables as well as
large numbers of factors without loops. This feature is different than streaming line graphs
described later in this paper.
The following examples show just a few ways to vectorize graph creation.

– Chains

1 N = 100 ;
b = B i t (N, 1 ) ;

3 fg = F a c t o r G r a p h ( ) ;
f t = F a c t o r T a b l e ( r and ( 2 ) , b . Domain , b . Domain ) ;

5 f t . n o r m a l i z e ( 1 ) ;
f = fg . a d d F a c t o r V e c t o r i z e d ( f t , b ( 1 : end−1) , b ( 2 : end ) ) ;

7 f . D i r e c t e d T o = b ( 2 : end ) ;
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This code snippet creates a directed Markov Model. It will result in the following
graphical model. Circles represent variables and squares represent factors.

– Grids

1 N = 100 ;
D = 7 5 ;

3 b = D i s c r e t e ( 1 : D, N,N) ;
fg = F a c t o r G r a p h ( ) ;

5 s i m i l a r i t y = @( x , y ) exp(− abs ( x−y ) ) ;
fg . a d d F a c t o r V e c t o r i z e d ( s i m i l a r i t y , b ( 1 : end −1 , : ) , b ( 2 : end , : ) ) ;

7 fg . a d d F a c t o r V e c t o r i z e d ( s i m i l a r i t y , b ( : , 1 : end−1) , b ( : , 2 : end ) ) ;

This code snippet creates the following graph and enforces similarity between adjacent
variables.

– Fully Connected Layers: There are many ways to use the addFactorVectorized feature.
The Dimple documentation provides more detail. However, we’ll include just one
more example to illustrate the flexibility of this feature. The following code generates
a graph with two layers where each node in layer 1 is connected to every node in layer
2.

1 N = 100 ;
l a y e r s = B i t (N, 2 ) ;

3 fg = F a c t o r G r a p h ( ) ;
s i m i l a r i t y = @( x , y ) exp(− abs ( x−y ) ) ;

5 fg . a d d F a c t o r V e c t o r i z e d ( s i m i l a r i t y , r epmat ( l a y e r s ( : , 1 ) , 1 ,N) ,
r epmat ( l a y e r s ( : , 2 ) ’ ,N, 1 ) ) ;

The following image represents the graph. Factors are omitted for readability.
• Streaming line graphs: many graphical models have a 1d structure (for instance, dynamic

bayesian networks, kth order Markov Chains, HMMs and all varieties of Kalman filters).
Dimple provides the ability to create a template that is repeated over a specified window
size. Data can then be streamed through this window. For predictive inference, this allows
effectively to use very large graphs while only using the memory required to carry sufficient
statistics (i.e. the memory usage does not grow with the size of the line graph).
The following code creates a Markov Chain. The rf.BufferSize = 2 code snippet
specifies that the sliding window should hold two instances of the nested graph in memory
so that some smoothing is performed in addition to prediction.
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1 b = B i t ( 2 , 1 ) ;
ng = F a c t o r G r a p h ( b ) ;

3 s i m i l a r i t y = @( x , y ) exp(− abs ( x−y ) ) ;
ng . a d d F a c t o r ( s i m i l a r i t y , b ( 1 ) , b ( 2 ) ) ;

5

fg = F a c t o r G r a p h ( ) ;
7 b = D i s c r e t e S t r e a m ( 0 : 1 ) ;

r f = fg . a d d R e p e a t e d F a c t o r ( ng , b . g e t S l i c e ( 1 ) , b . g e t S l i c e ( 2 ) ) ;
9 r f . B u f f e r S i z e = 2 ;

N = 100 ;
11 dds = Doub leAr rayDa taSource ( repmat ( [ 1 0 ] ,N, 1 ) ) ;

b . Da taSource = dds ;
13

fg . i n i t i a l i z e ( ) ;
15 w h i l e t r u e

17 %The ” f a l s e ” argument t e l l s Dimple n o t t o i n i t i a l i z e t h e
%messages so t h a t a s t h e r o l l e d up graph p r o g r e s s e s

19 %we don ’ t l o s e i n f o r m a t i o n from t h e p a s t .
fg . s o l v e ( f a l s e ) ;

21

%D i s p l a y b e l i e f o f c u r r e n t v a r i a b l e
23 b . F i r s t V a r . B e l i e f

25 i f ˜ fg . hasNext ( )
b r e a k ;

27 end
fg . advance ( ) ;

29 end

• Cluster belief propagation - loopy belief propagation can be improved by considering joint
distribution over groups of variables (instead of marginal distributions); the graph can also
be made less loopy by converting two or more factors into a single, larger factor.

• Multivariate Gaussians - Dimple provides support for Belief Propagation with Multivariate
Gaussians with linear and nonlinear operator factors. The Dimple documentation provides
more detail. Dimple also contains a set of demos, which include a Kalman filter.

2.2.2 Architecture and Inference Features

• Speed - Dimple’s Belief Propagation engine is well optimized for many problems and we
intend to optimize it further for others.

• Open source - Lyric has made Dimple open source with the hope of contributing to the
probabilistic programming community; how the community uses Dimple will also help
guide the development of future features, improvements, and hardware.
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• MATLAB and Java API, extendable to any language on top of JVM - Dimple is written
mostly in Java. This was chosen as a trade-off in speed vs. ease of development. A MAT-
LAB front end is provided for convenience.

• Customizable - The modular architecture allows all inference behavior to be customizable;
one can even write entirely new inference engines. Existing inference engines include
Sum Product, Min Sum, a k-best approximation for Sum Product and Min Sum, Gaussian
BP, Particle BP, and Gibbs sampling. As an example of customization, Dimple provides
specialized factors for efficiently performing inference over variables with a finite field
domain.

3 Hardware acceleration

3.1 GP5

As of this writing, Lyric Labs’ first prototype of an inference accelerator, GP5, will be available in
the next few months. All acceleration estimates are based on the GP5 simulator, which is complete
but not yet released publicly. GP5 accelerates discrete Sum Product, Min Sum, and more generally,
performs highly efficient weighted sparse tensor inner products.

The GP5 is optimized to accelerate inference on graphs with large factor tables. A factor function is
defined over the cartesian product of the domains of the connected variables; as a result, complexity
of the factor inference is of order O(ndn) where d is the domain size of the connected variables and
n is the degree of the factor. GP5 is aimed at optimizing inference in factor graphs where that factor
complexity is relatively high.

The actual execution time on the GP5 is determined by a collection of complicated and interlocking
factors: I/O between the host processor and the GP5, various memory sizes on the GP5 relative to the
message and factor table sizes of the factor graph, the scheduling of messages on the factor graph, the
degree of each factor, and the various asynchronous sub-processors on the GP5. Their interactions
may produce computational bottlenecks that prevent the user from achieving peak performance.

The GP5 supports factor nodes that can connect to up to 16 variables and variables can connect to up
to 256 factors. The factor table cache is 256KB and the maximum domain size of variables is 4096.
Data can be moved in and out of the GP5 at 18Gb/s, the chip will be 36mm2, and draws between 1
and 2 watts of power.

In a binary image denoising benchmark[6] (variables with binary domains, factors with degree 16
connecting 4 by 4 image patches), GP5 is estimated to be 3200x faster than Dimple running on an
intel i7, for a fraction of the power. The speedup is achieved by a large number of architectural
optimizations, as well as the utilization of multiple small cores to parallelize inference on a single
factor. Future versions could tile those cores to further enhance parallelism (including running
several factors in parallel). This is the best acceleration we have achieved in any of our benchmarks.

In the case of a stereo vision benchmark[6], the GP5 is estimated to be 100x faster than Dimple run-
ning on an intel i7. The sterevision acceleration is worse than the denoising benchmark acceleration
because of the small degree of the factor nodes in the stereo vision demo.

It is challenging to describe an expected acceleration across the range of models that can be used
with the GP5 because of the complexity of the interlocking factors. As a general guide, the larger
the factor table and the larger the degree, the more acceleration the GP5 can achieve. The GP5
simulator, however, can provide a fairly accurate estimation of the expected acceleration.

The following image shows the output of the Instruction Level Profiling Tool included with the GP5
simulator.
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3.2 Dimple as a Compiler for GP5

The GP5 hardware requires a compiler to translate a Dimple model to a set of GP5 hardware instruc-
tions. The GP5 Compiler fits nicely within the Dimple architecture, acting as just another inference
engine; as such, it is optimized for the GP5 hardware. The design problems associated with com-
piling down to the GP5 are unique and hard: for normal compiler design, optimal allocation of
variables to registers is an NP-complete map coloring problem; GP5 faces an even harder version
of this due to the requirement of allocating larger blocks of memory. Additionally, CISC compilers
provide challenges because different instructions might take different numbers of cycles. In order to
get maximum efficiency wins, timing of GP5 instructions varies over orders of magnitude.

4 Future Improvements

Lyric has a long list of plans for improving Dimple. Some of the immediate plans include speed
improvements, more real variable support, integrating with languages like Stochastic MATLAB (an
early prototype already exists), providing modelers in different languages, and tools to make it easier
to provide inference engines in different languages.
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