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Abstract
Being able to reason in an environment with a
large number of discrete actions is essential to
bringing reinforcement learning to a larger class
of problems. Recommender systems, industrial
plants and language models are only some of the
many real-world tasks involving large numbers
of discrete actions for which current methods are
difficult or even often impossible to apply.

An ability to generalize over the set of actions
as well as sub-linear complexity relative to the
size of the set are both necessary to handle such
tasks. Current approaches are not able to provide
both of these, which motivates the work in this
paper. Our proposed approach leverages prior
information about the actions to embed them in
a continuous space upon which it can general-
ize. Additionally, approximate nearest-neighbor
methods allow for logarithmic-time lookup com-
plexity relative to the number of actions, which is
necessary for time-wise tractable training. This
combined approach allows reinforcement learn-
ing methods to be applied to large-scale learn-
ing problems previously intractable with current
methods. We demonstrate our algorithm’s abili-
ties on a series of tasks having up to one million
actions.

1. Introduction
Advanced AI systems will likely need to reason with a large
number of possible actions at every step. Recommender
systems used in large systems such as YouTube and Ama-
zon must reason about hundreds of millions of items every
second, and control systems for large industrial processes
may have millions of possible actions that can be applied
at every time step. All of these systems are fundamentally
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reinforcement learning (Sutton & Barto, 1998) problems,
but current algorithms are difficult or impossible to apply.

In this paper, we present a new policy architecture which
operates efficiently with a large number of actions. We
achieve this by leveraging prior information about the ac-
tions to embed them in a continuous space upon which the
actor can generalize. This embedding also allows the pol-
icy’s complexity to be decoupled from the cardinality of
our action set. Our policy produces a continuous action
within this space, and then uses an approximate nearest-
neighbor search to find the set of closest discrete actions
in logarithmic time. We can either apply the closest ac-
tion in this set directly to the environment, or fine-tune this
selection by selecting the highest valued action in this set
relative to a cost function. This approach allows for gen-
eralization over the action set in logarithmic time, which is
necessary for making both learning and acting tractable in
time.

We begin by describing our problem space and then detail
our policy architecture, demonstrating how we can train it
using policy gradient methods in an actor-critic framework.
We demonstrate the effectiveness of our policy on various
tasks with up to one million actions, but with the intent that
our approach could scale well beyond millions of actions.

2. Definitions
We consider a Markov Decision Process (MDP) whereA is
the set of discrete actions, S is the set of discrete states, P :
S ×A×S → R is the transition probability distribution,
R : S ×A → R is the reward function, and γ ∈ [0, 1] is
a discount factor for future rewards. Each action a ∈ A
corresponds to an n-dimensional vector, such that a ∈ Rn.
This vector provides information related to the action. In
the same manner, each state s ∈ S is a vector s ∈ Rm.

The return of an episode in the MDP is the discounted
sum of rewards received by the agent during that episode:
Rt =

∑T
i=t γ

i−tr(si,ai). The goal of RL is to learn a
policy π : S → A which maximizes the expected return
over all episodes, E[R1]. The state-action value function
Qπ(s,a) = E[R1| s1 = s,a1 = a, π] is the expected re-
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turn starting from a given state s and taking an action a,
following π thereafter. Qπ can be expressed in a recursive
manner using the Bellman equation:

Qπ(s,a) = r(s,a) + γ
∑
s′

P (s′ | s,a)Qπ(s′, π(s′)).

In this paper, both Q and π are approximated by
parametrized functions.

3. Problem Description
There are two primary families of policies often used in RL
systems: value-based, and actor-based policies.

For value-based policies, the policy’s decisions are directly
conditioned on the value function. One of the more com-
mon examples is a policy that is greedy relative to the value
function:

πQ(s) = argmax
a∈A

Q(s,a). (1)

In the common case that the value function is a parame-
terized function which takes both state and action as input,
| A | evaluations are necessary to choose an action. This
quickly becomes intractable, especially if the parameter-
ized function is costly to evaluate, as is the case with deep
neural networks. This approach does, however, have the
desirable property of being capable of generalizing over
actions when using a smooth function approximator. If ai
and aj are similar, learning about ai will also inform us
about aj . Not only does this make learning more efficient,
it also allows value-based policies to use the action features
to reason about previously unseen actions. Unfortunately,
execution complexity grows linearly with | A | which ren-
ders this approach intractable when the number of actions
grows significantly.

In a standard actor-critic approach, the policy is explicitly
defined by a parameterized actor function: πθ : S → A.
In practice πθ is often a classifier-like function approxima-
tor, which scale linearly in relation to the number of ac-
tions. However, actor-based architectures avoid the com-
putational cost of evaluating a likely costly Q-function on
every action in the argmax in Equation (1). Nevertheless,
actor-based approaches do not generalize over the action
space as naturally as value-based approaches, and cannot
extend to previously unseen actions.

Sub-linear complexity relative to the action space and an
ability to generalize over actions are both necessary to
handle the tasks we interest ourselves with. Current ap-
proaches are not able to provide both of these, which moti-
vates the approach described in this paper.

STATE
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PROTO ACTION
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ACTION
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Figure 1. Wolpertinger Architecture

4. Proposed Approach
We propose a new policy architecture which we call the
Wolpertinger architecture. This architecture avoids the
heavy cost of evaluating all actions while retaining general-
ization over actions. This policy builds upon the actor-critic
(Sutton & Barto, 1998) framework. We define both an effi-
cient action-generating actor, and utilize the critic to refine
our actor’s choices for the full policy. We use multi-layer
neural networks as function approximators for both our ac-
tor and critic functions. We train this policy using Deep
Deterministic Policy Gradient (Lillicrap et al., 2015).

The Wolpertinger policy’s algorithm is described fully in
Algorithm 1 and illustrated in Figure 1. We will detail these
in the following sections.

Algorithm 1 Wolpertinger Policy
State s previously received from environment.
â = fθπ (s) {Receive proto-action from actor.}
Ak = gk(â) {Retrieve k approximately closest actions.}
a = argmaxaj∈Ak QθQ(s,aj)
Apply a to environment; receive r, s′.

4.1. Action Generation

Our architecture reasons over actions within a continuous
space Rn, and then maps this output to the discrete action
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set A. We will first define:

fθπ : S → Rn

fθπ (s) = â.

fθπ is a function parametrized by θπ , mapping from the
state representation space Rm to the action representation
space Rn. This function provides a proto-action in Rn for
a given state, which will likely not be a valid action, i.e. it
is likely that â /∈ A. Therefore, we need to be able to map
from â to an element in A. We can do this with:

g : Rn → A

gk(â) =
k

argmin
a∈A

|a−â|2.

gk is a k-nearest-neighbor mapping from a continuous
space to a discrete set1. It returns the k actions in A that
are closest to â by L2 distance. In the exact case, this
lookup is of the same complexity as the argmax in the
value-function derived policies described in Section 3, but
each step of evaluation is an L2 distance instead of a full
value-function evaluation. This task has been extensively
studied in the approximate nearest neighbor literature, and
the lookup can be performed in an approximate manner in
logarithmic time (Muja & Lowe, 2014). This step is de-
scribed by the bottom half of Figure 1, where we can see the
actor network producing a proto-action, and the k-nearest
neighbors being chosen from the action embedding.

4.2. Action Refinement

Depending on how well the action representation is struc-
tured, actions with a lowQ-value may occasionally sit clos-
est to â even in a part of the space where most actions have
a high Q-value. Additionally, certain actions may be near
each other in the action embedding space, but in certain
states they must be distinguished as one has a particularly
low long-term value relative to its neighbors. In both of
these cases, simply selecting the closest element to â from
the set of actions generated previously is not ideal.

To avoid picking these outlier actions, and to generally im-
prove the finally emitted action, the second phase of the
algorithm, which is described by the top part of Figure 1,
refines the choice of action by selecting the highest-scoring
action according to QθQ :

πθ(s) = argmax
a∈gk◦fθπ (s)

QθQ(s,a). (2)

This equation is described more explicitly in Algorithm 1.
It introduces πθ which is the full Wolpertinger policy. The
parameter θ represents both the parameters of the action
generation element in θπ and of the critic in θQ.

1For k = 1 this is a simple nearest neighbor lookup.

As we demonstrate in Section 7, this second pass makes
our algorithm significantly more robust to imperfections in
the choice of action representation, and is essential in mak-
ing our system learn in certain domains. The size of the
generated action set, k, is task specific, and allows for an
explicit trade-off between policy quality and speed.

4.3. Training with Policy Gradient

Although the architecture of our policy is not fully differ-
entiable, we argue that we can nevertheless train our policy
by following the policy gradient of fθπ . We will first con-
sider the training of a simpler policy, one defined only as
π̃θ = g ◦ fθπ . In this initial case we can consider that the
policy is fθπ and that the effects of g are a deterministic
aspect of the environment. This allows us to maintain a
standard policy gradient approach to train fθπ on its output
â, effectively interpreting the effects of g as environmen-
tal dynamics. Similarly, the argmax operation in Equation
(2) can be seen as introducing a non-stationary aspect to the
environmental dynamics.

4.4. Wolpertinger Training

The training algorithm’s goal is to find a parameterized
policy πθ∗ which maximizes its expected return over the
episode’s length. To do this, we find a parametrization θ∗

of our policy which maximizes its expected return over an
episode: θ∗ = argmaxθ E[R1|πθ].
We perform this optimization using Deep Deterministic
Policy Gradient (DDPG) (Lillicrap et al., 2015) to train
both fθπ and QθQ . DDPG draws from two stability-
inducing aspects of Deep Q-Networks (Mnih et al., 2015)
to extend Deterministic Policy Gradient (Silver et al., 2014)
to neural network function approximators by introducing a
replay buffer (Lin, 1992) and target networks. DPG is sim-
ilar to work introduced by NFQCA (Hafner & Riedmiller,
2011) and leverages the gradient-update originally intro-
duced by ADHDP (Prokhorov et al., 1997).

The goal of these algorithms is to perform policy iteration
by alternatively performing policy evaluation on the cur-
rent policy with Q-learning, and then improving upon the
current policy by following the policy gradient.

The critic is trained from samples stored in a replay buffer
(Mnih et al., 2015). Actions stored in the replay buffer are
generated by πθπ , but the policy gradient ∇aQθQ(s,a) is
taken at â = fθπ (s). This allows the learning algorithm to
leverage the otherwise ignored information of which action
was actually executed for training the critic, while taking
the policy gradient at the actual output of fθπ . The target
action in the Q-update is generated by the full policy πθ
and not simply fθπ .

A detailed description of the algorithm is available in the
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supplementary material.

5. Analysis
Time-complexity of the above algorithm scales linearly in
the number of selected actions, k. We will see that in prac-
tice though, increasing k beyond a certain limit does not
provide increased performance. There is a diminishing re-
turns aspect to our approach that provides significant per-
formance gains for the initial increases in k, but quickly
renders additional performance gains marginal.

Consider the following simplified scenario. For a random
proto-action â, each nearby action has a probability p of
being a bad or broken action with a low value ofQ(s, â)−c.
The values of the remaining actions are uniformly drawn
from the interval [Q(s, â) − b,Q(s, â) + b], where b ≤ c.
The probability distribution for the value of a chosen action
is therefore the mixture of these two distributions.

Lemma 1. Denote the closest k actions as integers
{1, . . . , k}. Then in the scenario as described above, the
expected value of the maximum of the k closest actions is

E
[

max
i∈{1,...k}

Q(s, i) | s, â
]
= Q(s, a) + b

− pk(c− b)− 2b

k + 1

1− pk+1

1− p

The highest value an action can have is Q(s, â) + b. The
best action within the k-sized set is thus, in expectation,
pk(c− b) + 2b

k+1
1−pk+1

1−p smaller than this value.

The first term is in O(pk) and decreases exponentially with
k. The second term is in O( 1

k+1 ). Both terms decrease a
relatively large amount for each additional action while k is
small, but the marginal returns quickly diminish as k grows
larger. This property is also observable in experiments in
Section 7, notably in Figures 6 & 7. Using 5% or 10% of
the maximal number of actions the performance is similar
to when the full action set is used. Using the remaining ac-
tions would result in relatively small performance benefits
while increasing computational time by an order of magni-
tude.

The proof to Lemma 1 is available in the supplementary
material.

6. Related Work
There has been limited attention in the literature with re-
gards to large discrete action spaces within RL. Most prior
work has been concentrated on factorizing the action space
into binary subspaces. Generalized value functions were
proposed in the form of H-value functions (Pazis & Parr,
2011), which allow for a policy to evaluate log(| A |) bi-

nary decisions to act. This learns a factorized value func-
tion from which a greedy policy can be derived for each
subspace. This amounts to performing log(| A |) binary op-
erations on each action-selection step.

A similar approach was proposed which leverages Error-
Correcting Output Code classifiers (ECOCs) (Dietterich &
Bakiri, 1995) to factorize the policy’s action space and al-
low for parallel training of a sub-policy for each action sub-
space (Dulac-Arnold et al., 2012) . In the ECOC-based ap-
proach case, a policy is learned through Rollouts Classifi-
cation Policy Iteration (Lagoudakis & Parr, 2003), and the
policy is defined as a multi-class ECOC classifier. Thus,
the policy directly predicts a binary action code, and then
a nearest-neighbor lookup is performed according to Ham-
ming distance.

Both these approaches effectively factorize the action space
into log(| A |) binary subspaces, and then reason about
these subspaces independently. These approaches can scale
to very large action spaces, however, they require a binary
code representation of each action, which is difficult to de-
sign properly. Additionally, the generalized value-function
approach uses a Linear Program and explicitly stores the
value function per state, which prevents it from generaliz-
ing over a continuous state space. The ECOC-based ap-
proach only defines an action producing policy and does
not allow for refinement with a Q-function.

These approaches cannot naturally deal with discrete ac-
tions that have associated continuous representations. The
closest approach in the literature uses a continuous-action
policy gradient method to learn a policy in a continuous
action space, and then apply the nearest discrete action
(Van Hasselt et al., 2009). This is in principle similar to
our approach, but was only tested on small problems with
a uni-dimensional continuous action space (at most 21 dis-
crete actions) and a low-dimensional observation space. In
such small discrete action spaces, selecting the nearest dis-
crete action may be sufficient, but we show in Section 7
that a more complex action-selection scheme is necessary
to scale to larger domains.

Recent work extends Deep Q-Networks to ‘unbounded’ ac-
tion spaces (He et al., 2015), effectively generating action
representations for any action the environment provides,
and picking the action that provides the highest Q. How-
ever, in this setup, the environment only ever provides a
small (2-4) number of actions that need to be evaluated,
hence they do not have to explicitly pick an action from a
large set.

This policy architecture has also been leveraged by the au-
thors for learning to attend to actions in MDPs which take
in multiple actions at each state (Slate MDPs) (Sunehag
et al., 2015).
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7. Experiments
We evaluate the Wolpertinger agent on three environment
classes: Discretized Continuous Control, Multi-Step Plan-
ning, and Recommender Systems. These are outlined be-
low:

7.1. Discretized Continuous Environments

To evaluate how the agent’s performance and learning
speed relate to the number of discrete actions we use the
MuJoCo (Todorov et al., 2012) physics simulator to simu-
late the classic continuous control tasks cart-pole (). Each
dimension d in the original continuous control action space
is discretized into i equally spaced values, yielding a dis-
crete action space with | A | = id actions.

In cart-pole swing-up, the agent must balance a pole at-
tached to a cart by applying force to the cart. The pole and
cart start in a random downward position, and a reward of
+1 is received if the pole is within 5 degrees of vertical and
the cart is in the middle 10% of the track, otherwise a re-
ward of zero is received. The current state is the position
and velocity of the cart and pole as well as the length of the
pole. The environment is reset after 500 steps.

We use this environment as a demonstration both that our
agent is able to reason with both a small and large num-
ber of actions efficiently, especially when the action repre-
sentation is well-formed. In these tasks, actions are repre-
sented by the force to be applied on each dimension. In the
cart-pole case, this is along a single dimension, so actions
are represented by a single number.

7.2. Multi-Step Plan Environment

Choosing amongst all possible n-step plans is a general
large action problem. For example, if an environment has
i actions available at each time step and an agent needs to
plan n time steps into the future then the number of actions
in is quickly intractable for argmax-based approaches. We
implement a version of this task on a puddle world envi-
ronment, which is a grid world with four cell types: empty,
puddle, start or goal. The agent consistently starts in the
start square, and a reward of -1 is given for visiting an
empty square, a reward of -3 is given for visiting a puddle
square, and a reward of 250 is given and the episode ends
if on a goal cell. The agent observes a fixed-size square
window surrounding its current position.

The goal of the agent is to find the shortest path to the goal
that trades off the cost of puddles with distance traveled.
The goal is always placed in the bottom right hand cor-
ner of the environment and the base actions are restricted
to moving right or down to guarantee goal discovery with
random exploration. The action set is the set of all pos-

sible n-length action sequences. We have 2 base actions:
{down, right}. This means that environments with a plan
of length n have 2n actions in total, for n = 20 we have
220 ≈ 1e6 actions.

This environment demonstrates our agent’s abilities with
very large number of actions that are more difficult to dis-
cern from their representation, and have less obvious con-
tinuity with regards to their effect on the environment com-
pared to the MuJoCo tasks. We represent each action with
the concatenation of each step of the plan. There are two
possible steps which we represent as either {0, 1} or {1, 0}.
This means that a full plan will be a vector of concatenated
steps, with a total length of 2n. This representation was
chosen arbitrarily, but we show that our algorithm is never-
theless able to reason well with it.

7.3. Recommender Environment

To demonstrate how the agent would perform on a real-
world large action space problem we constructed a sim-
ulated recommendation system utilizing data from a live
large-scale recommendation engine. This environment is
characterized by a set of items to recommend, which cor-
respond to the action setA and a transition probability ma-
trix W , such that Wi,j defines the probability that a user
will accept recommendation j given that the last item they
accepted was item i. Each item also has a reward r asso-
ciated with it if accepted by the user. The current state is
the item the user is currently consuming, and the previously
recommended items do not affect the current transition.

At each time-step, the agent presents an item i to the user
with action Ai. The recommended item is then either ac-
cepted by the user (according to the transition probability
matrix) or the user selects a random item instead. If the
presented item is accepted then the episode ends with prob-
ability 0.1, if the item is not accepted then the episode ends
with probability 0.2. This has the effect of simulating user
patience - the user is more likely to finish their session if
they have to search for an item rather than selecting a rec-
ommendation. After each episode the environment is reset
by selecting a random item as the initial environment state.

7.4. Evaluation

For each environment, we vary the number of nearest
neighbors k from k = 1, which effectively ignores the re-
ranking step described in Section 4.2, to k = | A |, which
effectively ignores the action generation step described in
Section 4.1. For k = 1, we demonstrate the performance
of the nearest-neighbor element of our policy g ◦ fθπ . This
is the fastest policy configuration, but as we see in the sec-
tion, is not always sufficiently expressive. For k = | A |,
we demonstrate the performance of a policy that is greedy
relative to Q, always choosing the true maximizing action
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from A. This gives us an upper bound on performance, but
we will soon see that this approach is often computation-
ally intractable. Intermediate values of k are evaluated to
demonstrate the performance gains of partial re-ranking.

We also evaluate the performance in terms of training time
and average reward for full nearest-neighbor search, and
three approximate nearest neighbor configurations. We use
FLANN (Muja & Lowe, 2014) with three settings we refer
to as ‘Slow’, ‘Medium’ and ‘Fast’. ‘Slow’ uses a hierarchi-
cal k-means tree with a branching factor of 16, which corre-
sponds to 99% retrieval accuracy on the recommender task.
‘Medium’ corresponds to a randomized K-d tree where 39
nearest neighbors at the leaf nodes are checked. This cor-
responds to a 90% retrieval accuracy in the recommender
task. ‘Fast’ corresponds to a randomized K-d tree with
1 nearest neighbor at the leaf node checked. This corre-
sponds to a 70% retrieval accuracy in the recommender
task. These settings were obtained with FLANN’s auto-
tune mechanism.

8. Results
In this section we analyze results from our experiments
with the environments described above.

8.1. Cart-Pole

The cart-pole task was generated with a discretization of
one million actions. On this task, our algorithm is able to
find optimal policies. We have a video available of our final
policy with one million actions, k = 1, and ‘fast’ FLANN
lookup here: http://goo.gl/3YFyAE.

We visualize performance of our agent on a one million
action cart-pole task with k = 1 and k = 0.5% in Figure
2, using an exact lookup. In the relatively simple cart-pole
task the k = 1 agent is able to converge to a good policy.
However, for k = 0.5%, which equates to 5,000 actions,
training has failed to attain more than 100,000 steps in the
same amount of time.
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Cartpole, 1e6 actions, exact lookup.
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Figure 2. Agent performance for various settings of k with exact
lookup as a function of steps. With 0.5% of neighbors, training
time is prohibitively slow and convergence is not achieved.

Figure 3 shows performance as a function of wall-time on
the cart-pole task. It presents the performance of agents
with varying neighbor sizes and FLANN settings after the
same number of seconds of training. Agents with k = 1 are
able to achieve convergence after 150,000 seconds whereas
k = 5, 000 (0.5% of actions) trains much more slowly.
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Cartpole, 1e6 actions, varying k and FLANN settings.
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Figure 3. Agent performance for various settings of k and
FLANN as a function of wall-time on one million action cart-
pole. We can see that with 0.5% of neighbors, training time is
prohibitively slow.

# Neighbors Exact Slow Medium Fast
1 18 2.4 8.5 23

0.5% – 5, 000 0.6 0.6 0.7 0.7

Table 1. Median steps/second as a function of k & FLANN set-
tings on cart-pole.

Table 1 display the median steps per second for the train-
ing algorithm. We can see that FLANN is only helpful for
k = 1 lookups. Once k = 5, 000, all the computation
time is spent on evaluating Q instead of finding nearest
neighbors. FLANN performance impacts nearest-neighbor
lookup negatively for all settings except ‘fast’ as we are
looking for a nearest neighbor in a single dimension. We
will see in the next section that for more action dimensions
this is no longer true.

8.2. Puddle World

We ran our system on a fixed Puddle World map of size
50×50. In our setup the system dynamics are deterministic,
our main goal being to show that our agent is able to find
appropriate actions amongst a very large set (up to more
than one million). To begin with we note that in the simple
case with two actions, n = 1 in Figure (4) it is difficult to
find a stable policy. We believe that this is due to a large
number of states producing the same observation, which
makes a high-frequency policy more difficult to learn. As
the plans get longer, the policies get significantly better.
The best possible score, without puddles, is 150 (50+50
steps of -1, and a final score of 250).

Figure (5) demonstrates performance on a 20-step plan

http://goo.gl/3YFyAE
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Figure 4. Agent performance for various lengths of plan, a plan of
n = 20 corresponds to 220 = 1, 048, 576 actions. The agent is
able to learn faster with longer plan lengths. k = 1 and ‘slow’
FLANN settings are used.

Puddle World with the number of neighbors k = 1 and
k = 52428, or 5% of actions. In this figure k = | A | is
absent as it failed to arrive to the first evaluation step. We
can see that in this task we are finding a near optimal policy
while never using the argmax pass of the policy. We see
that even our most lossy FLANN setting with no re-ranking
converges to an optimal policy in this task. As a large num-
ber of actions are equivalent in value, it is not surprising
that even a very lossy approximate nearest neighbor search
returns sufficiently pertinent actions for the task. Experi-
ments on the recommender system in Section 8.3 show that
this is not always this case.
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Figure 5. Agent performance for various percentages of k in a 20-
step plan task in Puddle World with FLANN settings on ‘slow’.

Table 3 describes the median steps per second during train-
ing. In the case of Puddle World, we can see that we can get
a speedup for equivalent performance of up to 1,250 times.

# Neighbors Exact Medium Fast
1 4.8 119 125

0.5% – 5,242 0.2 0.2 0.2
100% – 1e6 0.1 0.1 0.1

Table 2. Median steps/second as a function of k & FLANN set-
tings.

8.3. Recommender Task

Experiments were run on 3 different recommender tasks
involving 49 elements, 835 elements, and 13,138 elements.
These tasks’ dynamics are quite irregular, with certain ac-
tions being good in many states, and certain states requiring
a specific action rarely used elsewhere. This has the effect
of rendering agents with k = 1 quite poor at this task. Ad-
ditionally, although initial exploration methods were purely
uniform random with an epsilon probability, to better simu-
late the reality of the running system — where state transi-
tions are also heavily guided by user choice — we restricted
our epsilon exploration to a likely subset of good actions
provided to us by the simulator. This subset is only used to
guide exploration; at each step the policy must still choose
amongst the full set of actions if not exploring. Learning
with uniform exploration converges, but in the larger tasks
performance is typically 50% of that with guided explo-
ration.
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Figure 6. Performance on the 835-element recommender task for
varying values of k, with exact nearest-neighbor lookup.

Figure 6 shows performance on the 835-element task using
exact lookup for varying values of k as a percentage of the
total number of actions. We can see a clear progression of
performance as k is increased in this task. Although not
displayed in the plot, these smaller action sizes have much
less significant speedups, with k = | A | taking only twice
as long as k = 83 (1%).

Results on the 13, 138 element task are visualized in Fig-
ures (7) for varying values of k, and in Figure (8) with
varying FLANN settings. Figure (7) shows performance
for exact nearest- neighbor lookup and varying values of k.
We note that the agent using all actions (in yellow) does not
train as many steps due to slow training speed. It is training
approximately 15 times slower in wall-time than the 1%
agent.

Figure (8) shows performance for varying FLANN settings
on this task with a fixed k at 5% of actions. We can quickly
see both that lower-recall settings significantly impact the
performance on this task.

Results on the 49-element task with both a 200-
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Figure 7. Agent performance for various numbers of nearest
neighbors on 13k recommender task. Training with k = 1 failed
to learn.
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Figure 8. Agent performance for various FLANN settings on
nearest-neighbor lookups on the 13k recommender task. In this
case, fast and medium FLANN settings are equivalent. k = 656
(5%).

dimensional and a 20-dimensional representation are pre-
sented in Figure 9 using a fixed ‘slow’ setting of FLANN
and varying values of k. We can observe that when using
a small number of actions, a more compact representation
of the action space can be beneficial for stabilizing conver-
gence.

# Neighbors Exact Slow Medium Fast
1 31 50 69 68

1% – 131 23 37 37 37
5% – 656 10 13 12 14

10% – 1,313 7 7.5 7.5 7
100% – 13,138 1.5 1.6 1.5 1.4

Table 3. Median steps/second as a function of k & FLANN set-
tings on the 13k recommender task.

Results on this series of tasks suggests that our approach
can scale to real-world MDPs with large number of actions,
but exploration will remain an issue if the agent needs to
learn from scratch. Fortunately this is generally not the
case, and either a domain-specific system provides a good
starting state and action distribution, or the system’s dy-
namics constrain transitions to a reasonable subset of ac-
tions for a given states.
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Figure 9. Recommender task with 49 actions using 200 dimen-
sional action representation (left) and 20-dimensional action rep-
resentations (right), for varying values of k and fixed FLANN
setting of ‘slow’. The figure intends to show general behavior and
not detailed values.

9. Conclusion
In this paper we introduce a new policy architecture able to
efficiently learn and act in large discrete action spaces. We
describe how this architecture can be trained using DDPG
and demonstrate good performance on a series of tasks with
a range from tens to one million discrete actions.

Architectures of this type give the policy the ability to gen-
eralize over the set of actions with sub-linear complexity
relative to the number of actions. We demonstrate how con-
sidering only a subset of the full set of actions is sufficient
in many tasks and provides significant speedups. Addition-
ally, we demonstrate that an approximate approach to the
nearest-neighbor lookup can be achieved while often im-
pacting performance only slightly.

Future work in this direction would allow the action repre-
sentations to be learned during training, thus allowing for
actions poorly placed in the embedding space to be moved
to more appropriate parts of the space. We also intend to in-
vestigate the application of these methods to a wider range
of real-world control problems.
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Appendices
A. Detailed Wolpertinger Algorithm
Algorithm 2 describes the full DDPG algorithm with the
notation used in our paper, as well as the distinctions be-
tween actions from A and prototype actions.

The critic is trained from samples stored in a replay buffer.
These samples are generated on lines 9 and 10 of Algorithm
2. The action at is sampled from the full Wolpertinger pol-
icy πθ on line 9. This action is then applied on the environ-
ment on line 10 and the resulting reward and subsequent
state are stored along with the applied action in the replay
buffer on line 11.

On line 12, a random transition is sampled from the replay
buffer, and line 13 performs Q-learning by applying a Bell-
man backup onQθQ , using the target network’s weights for
the target Q. Note the target action is generated by the full
policy πθ and not simply fθπ .

The actor is then trained on line 15 by following the policy
gradient:

∇θfθπ ≈ Ef ′
[
∇θπQθQ(s, â)|â=fθ(s)

]
= Ef ′ [∇âQθQ(s, fθ(s)) · ∇θπfθπ (s)|] .
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Algorithm 2 Wolpertinger Training with DDPG
1: Randomly initialize critic network QθQ and actor fθπ

with weights θQ and θπ .
2: Initialize target network QθQ and fθπ with weights
θQ
′ ← θQ, θπ ′ ← θπ

3: Initialize g’s dictionary of actions with elements of A
4: Initialize replay buffer B
5: for episode = 1, M do
6: Initialize a random processN for action exploration
7: Receive initial observation state s1
8: for t = 1, T do
9: Select action at = πθ(st) according to the current

policy and exploration method
10: Execute action at and observe reward rt and new

state st+1

11: Store transition (st,at, rt, st+1) in B
12: Sample a random minibatch of N transitions

(si,ai, ri, si+1) from B
13: Set yi = ri + γ ·QθQ′ (si+1, πθ′(si+1))
14: Update the critic by minimizing the loss:

L(θQ) = 1
N

∑
i[yi −QθQ(si,ai)]2

15: Update the actor using the sampled gradient:

∇θπfθπ |si ≈
1

N

∑
i

∇aQθQ(s, â)|â=fθπ (si) · ∇θπfθπ (s)|si

16: Update the target networks:

θQ
′ ← τθQ + (1− τ)θQ′

θπ ′ ← τθπ + (1− τ)θπ ′

17: end for
18: end for

Actions stored in the replay buffer are generated by πθπ , but
the policy gradient ∇âQθQ(s, â) is taken at â = fθπ (s).
This allows the learning algorithm to leverage otherwise
ignored information of which action was actually executed
for training the critic, while taking the policy gradient at
the actual output of fθπ .

B. Proof of Lemma 1
Proof. Without loss of generality we can assume
Q(s, a) = 1

2 , b = 1
2 and replace c with c′ = c

2b , result-
ing in an affine transformation of the original setting. We
undo this transformation at the end of this proof to obtain
the general result.

There is a p probability that an action is ‘bad’ and has value
−c′. If it is not bad, the distribution of the value of the
action is uniform in [Q(s, a)−b,Q′(s, a)+b] = [0, 1]. This

implies that the cumulative distribution function (CDF) for
the value of an action i ∈ {1, . . . k} is

F (x; s, i) =


0 for x < −c
p for x ∈ [−c, 0)
p+ (1− p)x for x = [0, 1]
1 for x > 1 .

If we select k such actions, the CDF of the maximum of
these actions equals the product of the individual CDFs,
because the probability that the maximum value is smaller
that some given x is equal to the probability that all of the
values is smaller than x, so that the cumulative distribution
function for

Fmax(x; s, a) = P

(
max

i∈{1,...k}
Q(s, i) ≤ x

)
=

∏
i∈{1,...,k}

P (Q(s, i) ≤ x)

=
∏

i∈{1,...,k}

F (x; s, i)

= F (x; s, 1)k ,

where the last step is due to the assumption that the dis-
tribution is equal for all k closest actions (it is straightfor-
ward to extend this result by making other assumptions,
e.g., about how the distribution depends on distance to the
selected action). The CDF of the maximum is therefore
given by

Fmax(x; s, a) =


0 for x < −c′
pk for x ∈ [−c′, 0)
(p+ (1− p)x)k for x ∈ [0, 1]
1 for x > 1 .

Now we can determine the desired expected value as

E[ max
i∈{1,...,k}

Q(s, i)]

=

∫ ∞
−∞

x dFmax(x; s, a)

= pk
(
1

2
− c′

)
+

∫ 1

0

x dFmax(x; s, a)

= pk
(
1

2
− c′

)
+ [xFmax(x; s, a)]

1
0 −

∫ 1

0

Fmax(x; s, a) dx

= pk
(
1

2
− c′

)
+ 1−

∫ 1

0

(p+ (1− p)x)k dx

= pk
(
1

2
− c′

)
+ 1−

[
1

1− p
1

k + 1
(p+ (1− p)x)k+1

]1
0

= pk
(
1

2
− c′

)
+ 1−

(
1

1− p
1

k + 1
− 1

1− p
1

k + 1
pk+1

)
= 1 + pk

(
1

2
− c′

)
− 1

k + 1

1− pk+1

1− p ,
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where we have used
∫ 1

0
x dµ(x) =

∫ 1

0
1 − µ(x) dx, which

can be proved by integration by parts. We can scale back to
the arbitrary original scale by subtracting 1/2, multiplying
by 2b and then adding Q(s, a) back in, yielding

E
[

max
i∈{1,...,k}

Q(s, i)

]
= Q(s, a) + 2b

(
1 + pk

(
1

2
− c′

)
− 1

k + 1

1− pk+1

1− p − 1

2

)
= Q(s, a) + b+ pkb− pkc− 2b

k + 1

1− pk+1

1− p

= Q(s, a) + b− pkc− b
(

2

k + 1

1− pk+1

1− p − pk
)


